集成学习——Boosting的基础概念

本文介绍了Boosting算法,特别是AdaBoost和提升树,通过调整训练数据权重,训练多个弱分类器并线性组合成强分类器。AdaBoost强调迭代过程中的样本权重调整和弱分类器的重要性分配。提升树则以决策树为基础,通过前向分布算法构建加法模型。
摘要由CSDN通过智能技术生成

Boosting

分类问题中,通过改变训练数据的权值学习多个弱分类器,并将多个弱分类器进行线性组合,形成一个强分类器。

具有代表性的算法:

  • AdaBoost
  • 提升树

一、AdaBoost

  1. 如何改变训练数据的权值?
    A:对上一轮分类错误的样本加大权重,对分类正确的样本减小权重,使得当前分类器更加注意分类错误的样本。则分类问题被多个弱分类器“分而治之”

  2. 如何将弱分类器进行线性组合获取强分类器?
    A:采用多数表决的方法:加大分类误差率小的弱分类器的权值,使其在表决过程中起较大的作用,较小分类误差率大的弱分类器的权值,使其在表决过程中起较小的作用

AdaBoost算法
输入:训练数据 T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) T={(x_{1},y_{1}),(x_{2},y_{2}),\cdots,(x_{N},y_{N})} T=(x1,y1),(x2,y2),,(xN,yN),其中 x i ∈ X ⊆ R n , y i ∈ Y = { + 1 , − 1 } x_{i}\in \mathcal{X} \subseteq R^{n}, y_{i}\in \mathcal{Y}=\{+1, -1\} xiXRn,yiY={+1,1};弱分类器
输出:强分类器 G ( x ) G(x) G(x)
(1)初始化训练数据的权值分布
D 1 = { w 11 , ⋯   , w 1 i , ⋯   , w 1 N } , w 1 i = 1 N , i = 1 , 2 , ⋯   , N D_{1}=\{w_{11},\cdots,w_{1i},\cdots,w_{1N}\},w_{1i}=\frac{1}{N},i=1,2,\cdots,N D1={w11,,w1i,,w1N},w1i=N1,i=1,2,,N
(2)对 m = 1 , 2 , ⋯   , M m=1,2,\cdots,M m=1,2,,M
1. 使用具有权值分布 D m D_{m} Dm的训练数据集学习,得到基本分类器
G m : X → { + 1 , − 1 } G_{m}:\mathcal{X}\to \{+1,-1\} Gm:X{+1,1}
2. 计算 G m G_{m} Gm在训练数据集上的分类误差率:
e m = ∑ i = 1 N P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N w m i I ( G m ( x i ) ≠ y i ) = ∑ G ( x i ) ≠ y i w m i e_{m}=\sum_{i=1}^{N}P(G_{m}(x_{i})\ne y_{i})=\sum_{i=1}^{N}w_{mi}\mathcal{I}(G_{m}(x_{i})\ne y_{i})=\sum_{G(x_{i})\ne y_{i}}w_{mi} em=i=1NP(Gm(xi)=yi)=i=1NwmiI(Gm(xi)=yi)=G(xi)=yiwmi
3. 计算弱分类器 G m G_{m} Gm组合系数 α m \alpha_{m} αm:
α m = 1 2 l o g 1 − e m e m \alpha_{m}=\frac{1}{2}log\frac{1-e_{m}}{e_{m}} αm=21logem1em
4. 更新训练数据的权值分布
D m + 1 = { w m + 1 , 1 , ⋯   , w m + 1 , i , ⋯   , w m + 1 , N } D_{m+1}=\{w_{m+1,1},\cdots,w_{m+1,i},\cdots,w_{m+1,N}\} Dm+1={wm+1,1,,wm+1,i,,wm+1,N}
其中 w m + 1 , i = w m i Z m e x p ( − α m y i G m ( x i ) ) w_{m+1,i}=\frac{w_{mi}}{Z_{m}}exp(-\alpha_{m}y_{i}G_{m}(x_{i})) wm+1,i=Zmwmiexp(αmyiGm(xi)) ∑ i = 1 N w m , i = 1 \sum_{i=1}^{N}w_{m,i}=1 i=1Nwm,i=1 Z m Z_{m} Zm为规范化因子,即 Z m = ∑ i = 1 N w m i e x p ( − α m y i G m ( x i ) ) Z_{m}=\sum_{i=1}^{N}w_{mi}exp(-\alpha_{m}y_{i}G_{m}(x_{i})) Zm=i=1Nwmiexp(αmyiGm(xi)) D M + 1 D_{M+1} DM+1成为一个概率分布。
(3)构建基本分类器的线性组合
f ( x ) = ∑ i = 1 M α i G m ( x ) f(x)=\sum_{i=1}^{M}\alpha_{i}G_{m}(x) f(x)=i=1MαiGm(x)
得到最终分类器: G ( x ) = s i g n ( f ( x ) ) G(x)=sign(f(x)) G(x)=sign(f(x))

说明:
(1)首先假设训练数据具有均值分布,保证能够在原始数据集上学习 G 1 ( x ) G_{1}(x) G1(x)
(2)反复学习基本分类器,在每一轮 m = 1 , 2 , ⋯   , M m=1,2,\cdots,M m=1,2,,M中执行以下操作:
a)使用当前分布 D m D_{m} Dm加权的训练数据集学习基本分类器 G m ( x ) G_{m}(x) Gm(x)
b)计算当前分类器在加权训练数据集上的分类误差率 e m e_{m} em
c)计算基本分类器的组合系数 α m \alpha_{m} αm e m e_{m} em表示 G m G_{m} Gm在最终分类器中的重要性,当 e m ≤ 1 2 e_{m}\le\frac{1}{2} em21时, α ≥ 0 \alpha \ge 0 α0,并且 α \alpha α随着 e m e_{m} em的减小而增大
d)更新训练数据的权值:误分类样本的权值被放大 e x p ( 2 α m ) exp(2\alpha_{m}) exp(2αm)

二、前向分布算法

加法模型: f ( x ) = ∑ m = 1 M β m b ( x , γ m ) f(x)=\sum_{m=1}^{M}\beta_{m}b(x,\gamma_{m}) f(x)=m=1Mβmb(x,γm)其中, b ( x , γ m ) b(x,\gamma_{m}) b(x,γm)为基函数, β m \beta_{m} βm表示基函数的系数
给定训练数据和损失函数 L ( y , f ( x ) ) L(y,f(x)) L(y,f(x))的条件下,极小化损失函数学习加法模型:
m i n γ m , β m L ( y i , f ( x ) ) \underset{\gamma_{m},\beta_{m}}{min}L(y_{i},f(x)) γm,βmminL(yi,f(x))
直接优化上述问题较困难,优化思想:从前往后,每一步优化一个基函数及其系数,简化优化的复杂度

前向分布算法
输入:训练数据集 T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) T={(x_{1},y_{1}),(x_{2},y_{2}),\cdots,(x_{N},y_{N})} T=(x1,y1),(x2,y2),,(xN,yN),损失函数 L ( y , f ( x ) ) L(y,f(x)) L(y,f(x)),基函数集 { b ( x ; γ ) } \{b(x;\gamma)\} {b(x;γ)}
输出:加法模型: f ( x ) = ∑ m = 1 M β m b ( x , γ m ) f(x)=\sum_{m=1}^{M}\beta_{m}b(x,\gamma_{m}) f(x)=m=1Mβmb(x,γm)

(1)初始化 f 0 ( x ) = 0 f_{0}(x)=0 f0(x)=0
(2)对 m = 1 , 2 , ⋯   , M , m=1,2,\cdots,M, m=1,2,,M,
1. 极小化损失函数: ( β m , γ m ) = a r g m i n β , γ ∑ i = 1 N L ( y i , f m − 1 ( x ) + β b ( x ; γ ) ) (\beta_{m},\gamma_{m})=\underset{\beta,\gamma}{argmin}\sum_{i=1}^{N}L(y_{i},f_{m-1}(x)+\beta b(x;\gamma)) (βm,γm)=β,γargmini=1NL(yi,fm1(x)+βb(x;γ))
得到参数 β m , γ m \beta_{m},\gamma_{m} βm,γm
2. 更新: f m ( x ) = f m − 1 + β m b ( x , γ m ) f_{m}(x)=f_{m-1}+\beta_{m} b(x,\gamma_{m}) fm(x)=fm1+βmb(x,γm)
(3)得到加法模型
f ( x ) = f M ( x ) = ∑ m = 1 M β m b ( x , γ m ) f(x)=f_{M}(x)=\sum_{m=1}^{M}\beta_{m}b(x,\gamma_{m}) f(x)=fM(x)=m=1Mβmb(x,γm)

三、提升树

提升树是以分类树或回归树为基本分类器的Boosting
可以表示为决策树的加法模型: f ( x ) = ∑ i = 1 M T ( x , Θ m ) f(x)=\sum_{i=1}^{M} T(x,\Theta_{m}) f(x)=i=1MT(x,Θm)

提升树算法
采用前向分布算法
输入:初始提升树 f 0 ( x ) = 0 f_{0}(x)=0 f0(x)=0,第 m m m步的模型为:
f m = f m − 1 + T ( x , Θ m ) f_{m}=f_{m-1}+T(x,\Theta_{m}) fm=fm1+T(x,Θm)
其中, f m − 1 f_{m-1} fm1为当前模型,通过经验风险最小化确定下一棵决策树的参数: Θ m \Theta_{m} Θm
Θ ^ m = a r g m i n Θ m ∑ i = 1 N L ( y i , f m − 1 ( x i ) + T ( x i , Θ m ) \hat{\Theta}_{m}=\underset{\Theta_{m}}{arg min}\sum_{i=1}^{N}L(y_{i},f_{m-1}(x_{i})+T(x_{i},\Theta_{m}) Θ^m=Θmargmini=1NL(yi,fm1(xi)+T(xi,Θm)

对于二分类问题,基础分类器为二分类树
对于回归问题:将输入空间划分为 J J J个互不相交的趋于 R i , ⋯   , R J R_{i},\cdots,R_{J} Ri,,RJ
将树表示为 T ( x , Θ m ) = ∑ j = 1 J c j I ( x ∈ R j ) T(x,\Theta_{m})=\sum_{j=1}^{J}c_{j}I(x\in R_{j}) T(x,Θm)=j=1JcjI(xRj)
参数 Θ = { ( R 1 , c 1 ) , ⋯   , ( R m , c m ) } \Theta=\{(R_{1},c_{1}),\cdots,(R_{m},c_{m})\} Θ={(R1,c1),,(Rm,cm)}表示树的区域划分和各区域上的常数, J J J表示回归树的叶子节点树(复杂度)

采用平方损失函数, L ( y , f ( x ) ) = ( y − f ( x ) ) 2 L(y,f(x))=(y-f(x))^{2} L(y,f(x))=(yf(x))2
则损失 L ( y , f m − 1 ( x ) + T ( x , Θ m ) ) = ( y − f m − 1 ( x ) − T ( x , Θ m ) ) 2 = ( r − T ( x , Θ m ) ) 2 L(y,f_{m-1}(x)+T(x,\Theta_{m}))=(y-f_{m-1}(x)-T(x,\Theta_{m}))^{2}=(r-T(x,\Theta_{m}))^{2} L(y,fm1(x)+T(x,Θm))=(yfm1(x)T(x,Θm))2=(rT(x,Θm))2
其中, r = y − f m − 1 ( x ) r=y-f_{m-1}(x) r=yfm1(x)表示当前模型残差,即只需要用 T ( x , Θ m ) T(x,\Theta_{m}) T(x,Θm)拟合该残差

总结

  1. Boosting是将弱分类器提升为强分类器的算法,通过不断修改训练数据的权值分布,构建一系列弱分类器,然后将弱分类器线性组合,构成一个强分类器。代表性的算法:AdaBoost,
    弱分类器的线性组合模型为
    f ( x ) = ∑ i = 1 M α m G m ( x ) f(x)=\sum_{i=1}^{M}\alpha_{m}G_{m}(x) f(x)=i=1MαmGm(x)
  2. AdaBoost 的特点:通过迭代每次学习一个弱分类器。
    每次迭代中,提高前一轮被分类错误样本的权重,降低被分类正确样本的权重。最后,将基本分类器的现象组合作为强分类器,其中给分类误差率小的基本分类器以较大的权值,给分类误差率大的基本分类器以较小的权值
  3. AdaBoost本质是一个前向分布算法
  4. 提升树是以分类树或回归树为基本分类器的Boosting
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值