题目链接:
思路:
把这个题目分成两部分来看:
1.根据题目给出的中序和后续遍历结果,构建出二叉树结构。思路类似leetcode 106,这里不详细说。可以用node结构表示树,也可以用两个数组来表示树(分别存左孩子和右孩子)。
2.根据树结构求出最优解,用dfs解决即可。
代码:
1.用node结构表示树的写法
#include <iostream>
#include <iomanip>
#include <queue>
#include <sstream>
#include <iomanip>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxv = 1e5+5;
int root;
int best, best_sum; // 最优解,和最优解的权值之和
int n, mid[maxv], post[maxv];
struct node {
int val;
node* left;
node* right;
node() {val = -1; left = nullptr; right = nullptr;}
};
// 用来把一行数字输入到arr数组中的函数,顺便返回是否有输入
bool read_list(int* a){
string line;
if(!getline(cin, line)) return false; // 没有输入,返回false
stringstream ss(line); // 用string流s记录line,便于逐个提取数字
n = 0;
int x;
while(ss >> x) a[n++] = x; // 用s流输入数字到a数组中
return n > 0;
}
// 构建树结构的函数
node* build(int l1, int r1, int l2, int r2){
if(l1 > r1) return nullptr;
node* root = new node();
root->val = post[r2];
int p = l1;
while(mid[p] != root->val) p++;
int cnt = p - l1;
root->left = build(l1, p-1, l2, cnt+l2-1);
root->right = build(p+1, r1, l2+cnt, r2-1);
return root;
}
// 根据树结构,寻找最优解的函数
void findMin(node* root, int sum){
sum += root->val;
if(!root->left && !root->right){
if(sum < best_sum || (sum == best_sum && root->val < best)){
best_sum = sum;
best = root->val;
}
}
if(root->left) findMin(root->left, sum);
if(root->right) findMin(root->right, sum);
}
int main(){
while(read_list(mid)){
read_list(post);
node* root = build(0, n-1, 0, n-1);
best_sum = INF;
findMin(root, 0);
cout << best << "\n";
}
return 0;
}
2.用两个数组表示树的写法,思路一样
#include <iostream>
#include <iomanip>
#include <queue>
#include <sstream>
#include <iomanip>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxv = 1e5+10;
int best, best_sum; // 最优解,和最优解的权值之和
int n, mid[maxv], post[maxv], lch[maxv], rch[maxv]; // 通过左右子树数组来表示树结构
// 用来把一行数字输入到arr数组中的函数,顺便返回是否有输入
bool read_list(int* a){
string line;
if(!getline(cin, line)) return false; // 没有输入,返回false
stringstream ss(line); // 用string流s记录line,便于逐个提取数字
n = 0;
int x;
while(ss >> x) a[n++] = x; // 用s流输入数字到a数组中
return n > 0;
}
// 构建树结构的函数
int build(int l1, int r1, int l2, int r2){
if(l1 > r1) return 0; // 空树
int root = post[r2]; // 后序数组最后一个元素是根结点
int p = l1; // 用来寻找root在mid数组中对应的下标
while(mid[p] != root) p++;
int cnt = p - l1; // 左子树的结点个数
// 这部分代码比较难理解,最好自己画图看一下,思路可参见leetcode 106
lch[root] = build(l1, p-1, l2, cnt+l2-1);
rch[root] = build(p+1, r1, l2+cnt, r2-1);
return root;
}
// 根据树结构,寻找最优解的函数
void findMin(int u, int sum){
sum += u;
if(!lch[u] && !rch[u]){ // 如果发现是根结点,考虑要不要更新最优解
if(sum < best_sum || (sum == best_sum && u < best)){
// sum更小,或者sum一样但是叶子节点值更小,都要更新最优解
best_sum = sum;
best = u;
}
}
if(lch[u]) findMin(lch[u], sum);
if(rch[u]) findMin(rch[u], sum);
}
int main(){
while(read_list(mid)){
read_list(post);
build(0, n-1, 0, n-1);
best_sum = INF;
findMin(post[n-1], 0); // 从根结点开始找,开始时sum是0
cout << best << "\n";
}
return 0;
}