E-糖果
二维dp,f [ i ][ j ] 表示选到第 i 个糖果,k的余数是 j 时,最大的选择糖果数。
特别注意初始化,要memset为-0x3f,而不是0
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
const int maxn = 105;
int n, k, a[maxn], f[maxn][maxn];
int mo(int x) {return (x%k+k)%k;}
int main(){
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin>>n>>k; for(int i=1; i<=n; i++) cin>>a[i];
memset(f,-0x3f,sizeof(f)); f[0][0] = 0;
for(int i=1; i<=n; i++)
for(int j=0; j<k; j++){
// f[i][mo(j+a[i])] = max(f[i][mo(j+a[i])], f[i-1][j]+a[i]);
f[i][j] = max(f[i-1][j], f[i-1][mo(j-a[i])]+a[i]);
}
cout<<f[n][0];
}
H - 字符串折叠
首先不难发现,折叠方式有很多种,并且可以套娃折叠,一个大区间中可能有多个小区间被折叠。所以想到区间dp。可以用f [ i ][ j ]表示 i 到 j 部分的字符串被压缩的最小长度。
#include <bits/stdc++.h>
using namespace std;
//f[i][j]表示i到j部分的字符串被压缩的最小长度
string s; int n, m[105], f[105][105];
void init(){
//预处理数位长度
for(int i=1; i<=9; i++) m[i]=1;
for(int i=10; i<=99; i++) m[i]=2;
m[100] = 3;
//初始化折叠消耗
memset(f,0x3f,sizeof(f));
for(int i=1; i<=n; i++) f[i][i]=1;
}
bool check(int l, int r, int len){
for(int i=l; i<=r; i++) //检查是否每个循环节都一样
if(s[i] != s[(i-l)%len+l]) return false;
return true;
}
int main(){
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin>>s; n=s.size(); s=' '+s; //处理一下让下标从1开始
init();
for(int l=2; l<=n; l++)
for(int i=1,j=i+l-1; j<=n; i++,j++){
for(int k=i; k<j; k++) //枚举断点,区间合并
f[i][j] = min(f[i][j], f[i][k]+f[k+1][j]);
for(int k=i; k<j; k++){
int len=k-i+1; //循环节长度
if(l%len != 0) continue; //不能作为循环节长度
if(check(i,j,len)) //特别注意,不能写2+m[l/len]+len,因为len那部分可能继续压缩!!
f[i][j] = min(f[i][j], 2+m[l/len]+f[i][k]);
}
}
cout<<f[1][n];
}
F-纪念品
把当前价格看成weight,明天价格减今天价格看成value,跑 t 次完全背包。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 105;
int t, n, m, p[maxn][maxn], f[10005];
signed main(){
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin>>t>>n>>m;
for(int i=1; i<=t; i++)
for(int j=1; j<=n; j++)
cin>>p[i][j]; //第i天,第j个物品
for(int k=1; k<t; k++){
for(int i=0; i<=m; i++) f[i] = 0;
for(int i=1; i<=n; i++)
for(int j=p[k][i]; j<=m; j++)
f[j] = max(f[j], f[j-p[k][i]]+p[k+1][i]-p[k][i]);
m += f[m]; //下一天,钱增多了
}
cout<<m;
}
J - 互不侵犯King
可以看做每个king会影响同行和下一行的相邻king。所以可以先预处理同行的可能情况(存到bit数组中),然后对每一行的情况进行状压dp。用 f [ i ][ j ][ k ]表示第 i 行,当前行情况为 j (二进制数位表示),总共放了 k 个king时,可能的情况数。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <queue>
#define int long long
using namespace std;
int n, K, f[10][520][100], bit[520], cnt[520], size;
void dfs(int b,int c,int pos){ //预处理一行的情况
if(pos>=n) {bit[++size]=b; cnt[size]=c; return;}
dfs(b,c,pos+1); //这里不放king
dfs(b+(1<<pos),c+1,pos+2); //这里放king(注意要跳过一个位置)
}
signed main(){
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin>>n>>K;
dfs(0,0,0);
for(int i=1; i<=size; i++) f[1][i][cnt[i]]=1; //第一行,所有状态都是一种情况
for(int i=2; i<=n; i++) //枚举当前行数
for(int j=1; j<=size; j++) //枚举当前行状态
for(int k=1; k<=size; k++){ //枚举上一行状态
if(bit[j] & bit[k]) continue;
if((bit[j]<<1) & bit[k]) continue;
if((bit[j]>>1) & bit[k]) continue;
for(int c=cnt[j]; c<=K; c++) f[i][j][c] += f[i-1][k][c-cnt[j]];
}
int ans = 0;
for(int i=1; i<=size; i++)
ans += f[n][i][K];
cout<<ans;
}