【机器学习算法-python实现】扫黄神器-朴素贝叶斯分类器的实现

标签: 机器学习 python 贝叶斯
17008人阅读 评论(3) 收藏 举报
分类:

(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.背景

     以前我在外面公司实习的时候,一个大神跟我说过,学计算机就是要一个一个贝叶斯公式的套用来套用去。嗯,现在终于用到了。朴素贝叶斯分类器据说是好多扫黄软件使用的算法,贝叶斯公式也比较简单,大学做概率题经常会用到。核心思想就是找出特征值对结果影响概率最大的项。公式如下:
P(A|B) = \frac{P(B | A)\, P(A)}{P(B)}
       什么是朴素贝叶斯,就是特征值相互独立互不影响的情况。贝叶斯可以有很多变形,这里先搞一个简单的,以后遇到复杂的再写。

2.数据集

   摘自机器学习实战。

[['my','dog','has','flea','problems','help','please'],    0

 ['maybe','not','take','him','to','dog','park','stupid'],  1

 ['my','dalmation','is','so','cute','I','love','him'],          0

 ['stop','posting','stupid','worthless','garbage'],          1

 ['mr','licks','ate','my','steak','how','to','stop','him'],  0

['quit','buying','worthless','dog','food','stupid']]           1


以上是六句话,标记是0句子的表示正常句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。

3.代码

   
#以矩阵形式创建数据集
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not   
    return postingList,classVec

#将矩阵内容添加到列表,set获取list中不重复的元素
def createVocabList(dataSet):
    vocabSet = set([])  #create empty set
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)


#判断list中每个词在总共词语list中的位置
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec


def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    
    numWords = len(trainMatrix[0])
    
    pAbusive = sum(trainCategory)/float(numTrainDocs)#脏句的比例 
    p0Num = zeros(numWords); p1Num = zeros(numWords) #zero是numpy带的函数,zeros(i)长度为i的list          
    p0Denom = 0.0; p1Denom = 0.0                        
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:#如果是粗口句,每个词在p1num加一
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
           
    p1Vect = p1Num/p1Denom          #粗口字概率
    p0Vect = p0Num/p0Denom         
    return p0Vect,p1Vect,pAbusive

实现效果:

输出粗口字概率list:

[ 0.          0.          0.          0.05263158  0.05263158  0.          0.

  0.          0.05263158  0.05263158  0.          0.          0.

  0.05263158  0.05263158  0.05263158  0.05263158  0.05263158  0.

  0.10526316  0.          0.05263158  0.05263158  0.          0.10526316

  0.          0.15789474  0.          0.05263158  0.          0.          0.        ]


出现概率最大项:

0.157894736842


对应的词是:stupid

['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park', 'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how', 'stupid', 'so', 'take', 'mr', 'steak', 'my']



4.下载

查看评论

机器学习及python实现——朴素贝叶斯分类器

问题引入 考虑构建一个垃圾邮件分类器,通过给定的垃圾邮件和非垃圾邮件的数据集,通过机器学习构建一个预测一个新的邮件是否是垃圾邮件的分类器。邮件分类器是通常的文本分类器中的一种。 朴素贝叶斯方法 ...
  • Linkin_ygw
  • Linkin_ygw
  • 2017-05-05 14:17:39
  • 853

朴素贝叶斯分类器——机器学习算法(二)

自从 AlphaGo 掀人工智能的巨大热潮之后,我便对人工智能产生了极大的兴趣。在人工智能各种算法面前,我有一种深深的无力感,一边在网络上了解TensorFlow、Caffe等大公司开源的框架,一边重...
  • a727911438
  • a727911438
  • 2017-03-18 00:48:23
  • 1085

机器学习算法-朴素贝叶斯Python实现

引文:前面提到的K最近邻算法和决策树算法,数据实例最终被明确的划分到某个分类中,下面介绍一种不能完全确定数据实例应该划分到哪个类别,或者说只能给数据实例属于给定分类的概率。基于贝叶斯决策理论的分类方法...
  • Dream_angel_Z
  • Dream_angel_Z
  • 2015-05-28 12:59:06
  • 6559

Python实现朴素贝叶斯分类器

# -*-coding:utf-8-*- '''     朴素贝叶斯算法 ''' from __future__ import division  global classN...
  • u012293522
  • u012293522
  • 2015-05-26 17:07:08
  • 1251

机器学习实战——python实现简单的朴素贝叶斯分类器

基础公式 贝叶斯定理:P(A|B) = P(B|A)*P(A)/P(B) 假设B1,B2…Bn彼此独立,则有:P(B1xB2x…xBn|A) = P(B1|A)xP(B2|A)x…xP(Bn|A)...
  • chenge_j
  • chenge_j
  • 2017-05-11 12:31:47
  • 1062

朴素贝叶斯分类器的python实现

# -*- coding:utf-8 -*- from numpy import * from sklearn import datasets import numpy as np class Na...
  • Incy_1218
  • Incy_1218
  • 2016-10-22 11:39:24
  • 966

朴素贝叶斯文本分类(python代码实现)

朴素贝叶斯(naive bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。 优点:在数据较少的情况下仍然有效,可以处理多分类问题。 缺点:对入输入数据的准备方式较为敏感。 使用数据类型:标称...
  • csqazwsxedc
  • csqazwsxedc
  • 2017-04-07 00:02:48
  • 5173

朴素贝叶斯分类文本 python实现

朴素贝叶斯(naive bayes)模型主要用于文本分类,比如要将邮件分类为正常邮件和带侮辱性词汇邮件 对于一封邮件来说其特征可以表示为该邮件中单词出现的情况。 比如我们有一个5000个词的词典表,那...
  • qq547276542
  • qq547276542
  • 2017-04-27 22:10:05
  • 3571

《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现

关于朴素贝叶斯分类算法的理解请参考:http://blog.csdn.net/gamer_gyt/article/details/47205371 Python代码实现: #encoding:ut...
  • Gamer_gyt
  • Gamer_gyt
  • 2015-08-22 17:05:39
  • 4744

朴素贝叶斯分类Iris数据

  • 2011年03月23日 19:45
  • 98KB
  • 下载
    统计

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    作者公众号:凡人机器学习

    凡人机器学习

    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 89万+
    积分: 1万+
    排名: 1617
    博客专栏