数学优化1-数学优化的类型

同步于Buracag的博客

数学优化(Mathematical Optimization)问题,也叫最优化问题,是指在一定约束条件下,求解一个目标函数的最大值(或最小值)问题。

数学优化问题的定义为:给定一个目标函数(也叫代价函数) A → R A → \Bbb{R} AR,寻找一个变量(也叫参数) x ∗ ∈ D x^* \in D xD,使得对于所有 D D D中的 x , f ( x ∗ ) ≤ f ( x ) x,f(x^∗) ≤ f(x) xf(x)f(x)(最小化);或者 f ( x ∗ ) ≥ f ( x ) f(x^∗) \geq f(x) f(x)f(x)(最大化),其中 D D D为变量 x x x的约束集,也叫可行域; D D D中的变量被称为是可行解。

1. 离散优化和连续优化

根据输入变量 x x x的值域是否为实数域,数学优化问题可以分为离散优化问题和连续优化问题。

1.1 离散优化问题

离散优化(Discrete Optimization)问题是目标函数的输入变量为离散变量,比如为整数或有限集合中的元素。离散优化问题主要有两个分支:

  1. 组合优化(Combinatorial Optimization):其目标是从一个有限集合中找出使得目标函数最优的元素。在一般的组合优化问题中,集合中的元素之间存在一定的关联,可以表示为图结构。典型的组合优化问题有旅行商问题、最小生成树问题、图着色问题等。很多机器学习问题都是组合优化问题,比如特征选择、聚类问题、超参数优化问题以及**结构化学习(Structured Learning)**中标签预测问题等。
  2. 整数规划(Integer Programming):输入变量 x ∈ Z d x \in \Bbb{Z}^d xZd为整数。一般常见的整数规划问题为整数线性规划(Integer Linear Programming,ILP)。整数线性规划的一种最直接的求解方法是:(1)去掉输入必须为整数的限制,将原问题转换为一般的线性规划问题,这个线性规划问题为原问题的松弛问题;(2)求得相应松弛问题的解;(3)把松弛问题的解四舍五入到最接近的整数。但是这种方法得到的解一般都不是最优的,因此原问题的最优解不一定在松弛问题最优解的附近。另外,这种方法得到的解也不一定满足约束条件。

离散优化问题的求解一般都比较困难,优化算法的复杂度都比较高。

1.2 连续优化问题

连续优化(Continuous Optimization)问题是目标函数的输入变量为连续变量 x ∈ R d x \in \Bbb{R}^d xRd,即目标函数为实函数。下文的内容主要以连续优化为主。

2. 无约束优化和约束优化

在连续优化问题中,根据是否有变量的约束条件,可以将优化问题分为无约束优化问题和约束优化问题。

无约束优化问题(Unconstrained Optimization)的可行域为整个实数域 D = R d D = \Bbb{R}^d D=Rd,可以写为
(1) min ⁡ x f ( x ) \min_{x} f(x) \tag{1} xminf(x)(1)
其中 x ∈ R d x \in \Bbb{R}^d xRd为输入变量, f : R d → R f : \Bbb{R}^d \to \Bbb{R} f:RdR为目标函数。

约束优化问题(Constrained Optimization)中变量x需要满足一些等式或不等式的约束。约束优化问题通常使用拉格朗日乘数法来进行求解。

3. 线性优化和非线性优化

如果在公式(1) 中,目标函数和所有的约束函数都为线性函数,则该问题为线性规划问题(Linear Programming)。相反,如果目标函数或任何一个约束函数为非线性函数,则该问题为非线性规划问题(Nonlinear Programming)

在非线性优化问题中,有一类比较特殊的问题是凸优化问题(Convex Programming)。在凸优化问题中,变量x 的可行域为凸集,即对于集合中任意两点,它们的连线全部位于在集合内部。目标函数f也必须为凸函数,即满足
(2) f ( α x + ( 1 − α ) y ) ≤ α f ( x ) + ( 1 − α ) f ( y ) , ∀ α ∈ [ 0 , 1 ] f(\alpha x + (1 − \alpha)y) \leq \alpha f(x) + (1 − \alpha)f(y), ∀\alpha \in [0, 1] \tag{2} f(αx+(1α)y)αf(x)+(1α)f(y),α[0,1](2)

凸优化问题是一种特殊的约束优化问题,需满足目标函数为凸函数,并且等式约束函数为线性函数,不等式约束函数为凹函数。

主要参考https://github.com/nndl/nndl.github.io

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值