优化数学基础

本文探讨了机器学习中的优化问题,从目标函数、导数和偏导数的概念出发,深入讲解Jacobian矩阵、二阶导数及Hessian矩阵的重要性。一阶优化如梯度下降利用导数,而二阶优化如牛顿法涉及Hessian矩阵。同时,介绍了约束优化的概念,即在特定条件下寻找目标函数的最优解。
摘要由CSDN通过智能技术生成

目标函数

在机器学习中,把需要最大化或者最小化的函数称为目标函数。而在其中一大部分都是最小化,在最小化的优化中,目标函数又被称为代价函数(cost function)或者损失函数(loss function)。

导数和偏导数

假设有一个函数 y=f(x) ,导数 f(x) 代表了 f(x) 在点x上的斜率。求导对于机器学习中优化问题的有很重要的意义。例如在梯度下降中,优化的方向就是导数为负的方向。

通常,导数为零的点就是我们的优化目的地,不管是全局的优化还是局部的优化。

当一个函数的变量有很多的时候,我们如果只想知道在点x处只有一个变量 xi 变化时函数的变化,此时,就需要用到偏导数的概念了。

Jacobian矩阵

有时我们需要计算输入和输出都为向量的函数的所有偏导数,包含这样的偏导数的矩阵被称为Jacobian矩阵。如果我们有一个函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值