目标函数
在机器学习中,把需要最大化或者最小化的函数称为目标函数。而在其中一大部分都是最小化,在最小化的优化中,目标函数又被称为代价函数(cost function)或者损失函数(loss function)。
导数和偏导数
假设有一个函数 y=f(x) ,导数 f′(x) 代表了 f(x) 在点x上的斜率。求导对于机器学习中优化问题的有很重要的意义。例如在梯度下降中,优化的方向就是导数为负的方向。
通常,导数为零的点就是我们的优化目的地,不管是全局的优化还是局部的优化。
当一个函数的变量有很多的时候,我们如果只想知道在点x处只有一个变量 xi 变化时函数的变化,此时,就需要用到偏导数的概念了。
Jacobian矩阵
有时我们需要计算输入和输出都为向量的函数的所有偏导数,包含这样的偏导数的矩阵被称为Jacobian矩阵。如果我们有一个函数