北京时间2024年10月8日诺贝尔物理学奖颁奖,授予John J. Hopfield 和Geoffrey E. Hinton,以表彰他们“通过人工神经网络实现机器学习的基础性发现和发明”。 Hopfield发明了一种联想记忆,可以存储和重建图像和其他类型的数据模式。Hinton发明了一种可以在数据中自主查找属性的方法,从而执行诸如识别图片中特定元素等任务;而Hinton以Hopfield网络为基础,开发了一种新网络:玻尔兹曼机(Boltzmann machine)。下面介绍一下Hopfield早期的经典工作:Hopfield网络。
Hopfield网络是一种早期的人工神经网络模型,由John Hopfield在1982年提出。它是一种递归神经网络,网络中的每个神经元都与其他所有神经元相连,形成一个高度耦合的网络。Hopfield网络的主要特点是其能够存储和回忆多个模式,通过训练网络以存储信息,然后通过部分输入重构完整信息。
图1 包含5个神经元的hopfield网络
Hopfield网络的基本原理是将神经元的输出作为输入的一部分反馈到网络中,形成反馈机制,使得网络具有记忆和信息存储的能力。在Hopfield网络中,每个神经元的状态只有两种可能:激活或抑制,这种二值性使得网络具有很强的鲁棒性和抗干扰能力。
图2 包含多层的Hopfield网络
Hopfield网络有两个主要的应用领域:模式识别和记忆存储。在模式识别方面,它可以用于图像识别、语音识别等任务。在记忆存储方面,它可以存储和回忆多个模式,例如,通过部分输入重构完整图像,这在遥感图像处理等领域具有广泛应用。
Hopfield网络的另一个应用是求解旅行商问题(TSP),尽管其效果可能不如其他算法,但它基于网络能量并使用微分方程等数学方法对网络进行分析,这是值得深入研究的。
近年来,Hopfield网络的研究兴趣有所复兴,特别是在能量基神经架构的背景下。Hopfield网络的现代版本,如连续Hopfield网络(MHN),在结构上与原始的Hopfield网络相似,但在性能上有所提升。
Hopfield网络的概念也启发了新的神经网络模型的开发,例如稀疏量化Hopfield网络(SQHN),这是一种能量基模型,它优化能量函数并利用结合神经生成和局部学习规则的学习算法,特别适用于噪声和在线持续设置。Hopfield网络及其变体在理论和应用层面都对深度学习和神经网络领域产生了深远的影响。