Transformer模型,即《Attention is All your Need》这一大作自从被提出以来,已经成为自然语言处理(NLP)和计算机视觉等领域的核心架构(详见 https://blog.csdn.net/burstone/article/details/143135395)。然而,由于其对计算和存储的高要求,比如计算attention,其时间复杂度是N^2(其中N为序列的长度);同样,在encoder与decoder中,多层模型的stack引入了大量的参数,因而,Transformer模型在GPU上的大规模部署受到了限制,并行计算存在一定困难。为了解决这个问题,研究者们从不同角度提出了多种优化策略来提升Transformer模型的效率,以下是些常见的方法:
-
稀疏注意力机制:通过引入稀疏注意力机制,可以显著降低Transformer模型的计算复杂度。例如,Longformer模型通过引入滑动窗口、扩张滑动窗口和全局注意力的组合,实现了稀疏的注意力机制,将自注意力计算的复杂度从O(n^2)降低到O(n),使其能够高效处理长序列数据。
-
内存优化:Linformer模型通过降低key和value矩阵的维度,将自注意力机制的复杂度降低到线性级别,从而在保证模型性能的同时大幅降低了内存消耗。
-
模型压缩:量化技术和剪枝技术是两种有效的模型压缩方法。量化通过降低模型参数的精度来减少内存占用和计算量,而剪枝技术通过移除模型中不重要的参数来减小模型大小。
-
硬件加速:充分利用GPU和TPU等高性能计算设备可以显著加速Transformer模型的训练和推理过程。分布式训练通过将模型参数和数据分布到多个计算节点上,实现了并行计算和资源共享,从而大幅度缩短模型的训练时间。
-
算法创新:例如,SLAB模型通过渐进式替换LayerNorm层为BatchNorm层,并结合简化的线性注意力模块,实现了Transformer模型的高效推理。
-
算子融合和重构:将多个神经网络层融合成一个CUDA kernel能很大程度减小计算量和内存IO。例如,Self-attention和Feedforward两个核心模块在计算图优化后的CUDA kernel实现方案,可以显著提升计算效率。
-
混合精度量化:通过使用混合精度量化,可以在保持模型性能的同时减少计算资源的消耗。
-
先进内存管理:优化内存管理可以减少内存访问开销,提高内存使用效率。
-
Input Padding 移除:去除不必要的输入填充可以减少无效计算,提高模型的运行效率。
-
GEMM配置:优化GEMM(General Matrix Multiply)配置可以提升矩阵运算的效率。
这些优化策略的综合应用可以显著提升Transformer模型的训练速度和推理效率,为人工智能技术的广泛应用提供有力支持。随着技术的不断进步和算法的持续创新,Transformer模型的性能将得到进一步提升和优化。
下面简要介绍第一种方法:稀疏注意力机制,它是一种优化的注意力机制,它通过减少计算量和内存消耗来提高处理长序列数据的效率。在传统的Transformer模型中,自注意力机制需要计算输入序列中所有位置对的相似性得分,这导致计算和内存需求与输入序列长度成二次方关系。而稀疏注意力机制只关注输入序列中的一部分元素,从而降低了这一需求。
稀疏注意力的工作原理主要包括以下几个方面:
-
关键元素选择:使用特定的方法(如卷积神经网络、空间分层等)从输入数据中选择出关键元素。
-
相似度计算:仅计算当前元素与这些关键元素之间的相似度,生成上下文向量。
-
加权求和:根据相似度得分对关键元素进行加权求和,得到最终的输出结果。
稀疏注意力机制的实现方式有多种,下面举两个例子展示了稀疏注意力机制如何通过减少不必要的计算来提高模型的效率,特别是在处理长序列数据时。通过这种方式,模型可以更快地训练和推理,同时保持或提高性能。
例1:Atrous Self Attention
Atrous Self Attention(膨胀自注意力)是一种稀疏注意力机制,它受到“膨胀卷积(Atrous Convolution)”的启发。在这种机制中,每个元素只与它相对距离为 k , 2 k , 3 k , … k,2k,3k,\dots k,2k,3k,…的元素关联,其中 k > 1 k > 1 k>1是预先设定的超参数。这意味着,如果序列长度为 n n n,而 k k k为2,那么每个元素将只与相隔1个、2个、3个…位置的元素计算注意力,从而减少计算量。
例如,考虑一个简单的序列:[A, B, C, D, E],如果 k = 2 k=2 k=2,那么:
- A 将只与 B 和 D 计算注意力
- B 将只与 A、C 和 E 计算注意力
- C 将只与 B、D 计算注意力
- D 将只与 A、C 和 E 计算注意力
- E 将只与 B 和 D 计算注意力
这种机制通过减少每个元素需要计算的注意力对的数量,从而降低了整体的计算复杂度。在实际应用中,这种方法可以显著减少模型在处理长序列时的计算量和内存消耗,同时保持或甚至提高模型的性能。
例2:Local Self Attention
Local Self Attention(局部自注意力)是另一种稀疏注意力机制,它要求每个元素只与前后 k k k个元素以及自身有关联。这种方法类似于普通卷积,保留了一个 2 k + 1 2k+1 2k+1大小的窗口,然后在窗口内进行一些运算。
例如,对于同样的序列 [A, B, C, D, E],如果 k = 1 k=1 k=1,那么:
- A 将只与 A 和 B 计算注意力
- B 将只与 A、B 和 C 计算注意力
- C 将只与 B、C 和 D 计算注意力
- D 将只与 C、D 和 E 计算注意力
- E 将只与 D 和 E 计算注意力
这种方法通过限制每个元素的关联范围,进一步减少了计算量,使得模型能够更高效地处理局部信息,同时减少对全局信息的依赖。
稀疏注意力机制的优势在于其可调节性,通过调整参数 w w w的值,可以控制被计算的元素的数量,从而在计算效率和模型性能之间找到一个平衡。这种机制在自然语言处理(NLP)、计算机视觉(CV)、语音识别、推荐系统等领域都有广泛的应用。
此外,稀疏注意力机制还可以通过top-k选择,将注意力退化为稀疏注意力,保留最有助于引起注意的部分,并删除其他无关的信息,有效地保存了重要信息并消除了噪声。这种方法在保存重要信息和消除噪声方面是有效的,可以使注意力更多地集中在最有贡献的价值因素上。