北京时间2024年10月8日诺贝尔物理学奖颁奖,授予John J. Hopfield 和Geoffrey E. Hinton,以表彰他们“通过人工神经网络实现机器学习的基础性发现和发明”。 Hopfield发明了一种联想记忆,可以存储和重建图像和其他类型的数据模式。Hinton发明了一种可以在数据中自主查找属性的方法,从而执行诸如识别图片中特定元素等任务;而Hinton以Hopfield网络为基础,开发了一种新网络:玻尔兹曼机(Boltzmann machine)。下面介绍一下Hinton早期的经典工作:玻尔兹曼机。
玻尔兹曼机(Boltzmann Machine)是一种受统计力学启发的多层神经网络,由Geoffrey Hinton和Terry Sejnowski在1985年发明。它是一种随机神经网络,可以看作是Hopfield神经网络的随机版本,能够学习内部表达并解决复杂的组合优化问题。
玻尔兹曼机的特点:
- 网络结构:玻尔兹曼机包含可见层(输入层)和隐藏层,层与层之间的节点是全连接的,但同层内的节点不相连。
- 能量函数:网络中的状态由一个能量函数定义,该函数衡量了网络中所有节点状态的“能量”。
- 概率分布:网络的平衡状态服从玻尔兹曼分布,这是一种描述粒子在不同状态下的概率分布的函数。
- 学习机制:玻尔兹曼机通过模拟退火算法来调整权重,从而学习数据的分布。
- 生成模型:玻尔兹曼机是一种生成模型,能够生成新的数据样本,这使得它在无监督学习中非常有用。
受限玻尔兹曼机(RBM):
受限玻尔兹曼机是玻尔兹曼机的一种特殊形式,它在网络结构上做了限制,即只允许可见层和隐藏层之间的连接,而不允许层内连接。这种结构简化了模型,使得训练变得更加高效。
玻尔兹曼机的工作原理:
- 初始化:随机初始化网络的权重和偏置。
- 正向传播:输入数据被送入可见层,通过网络的权重和偏置影响隐藏层的状态。
- 激活隐藏层:隐藏层的节点根据输入和权重随机决定是否激活。
- 反向传播:隐藏层的状态可以被用来重构可见层的状态,这是一种解码过程。
- 学习:通过调整权重来最大化输入数据的概率,这是一个迭代过程。
应用场景:
玻尔兹曼机及其变体(如RBM)在多个领域有广泛应用,包括:
- 图像识别:学习图像的特征表示,提高分类或物体识别的准确性。
- 推荐系统:通过编码用户对物品的评分,生成预测评分,用于推荐。
- 聚类和降维:发现数据的潜在结构。
尽管玻尔兹曼机在理论上非常有趣,但由于其训练时间较长,实际应用中更多的是使用其简化版本——受限玻尔兹曼机。RBM的训练更加高效,且能够捕捉数据的分布式表示。