Instance Segmentation记录(个人)

Personal-Instance-Segmentation-Paper-Record

Under construction!

Table of Contents

Deep Learning Methods

SDS

[Paper] Simultaneous Detection and Segmentation

[Year] ECCV 2014 

[Authors] Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik

[Pages] https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/

[Description]

Hypercolumns

[Paper] Hypercolumns for Object Segmentation and Fine-grained Localization

[Year] CVPR 2015 Oral

[Authors] Bharath Hariharan, Pablo Arbelaez, Ross Girshick

[Pages] https://github.com/bharath272/sds

[Description]

CFM

[Paper] Convolutional Feature Masking for Joint Object and Stuff Segmentation

[Year] CVPR 2015 

[Authors] Jifeng Dai, Kaiming He, Jian Sun

[Pages]

[Description]

MNC ★★

[Paper] Instance-aware Semantic Segmentation via Multi-task Network Cascades

[Year] CVPR 2016 Oral

[Authors] Jifeng Dai, Kaiming He, Jian Sun

[Pages] https://github.com/daijifeng001/MNC

[Description]

1) 模型包含三个网络: differentiating instances, estimating masks, categorizing objects. 代码之后可以详细研究一下.

2) 区分实例, 即得到每个instance的不分类别的bounding box, 类似RPN,

3) 预测mask, 即得出每个bbox中的二值mask. bbox经过ROI Warp到固定尺寸, 用2个全连接层完成每个像素的二值分类.

4) 分类, 即根据bbox和mask得到当前instance的类别. 此处对于输入特征考虑了两种选择, 一是直接将bbox的特征作为输入, 二是将bbox的特征与mask做点乘, 只输出mask部分的特征其余位置置零.

5) 设计了5层的级联网络, 上述的三个步骤即为stage 1, 2, 3, 接下来以前面得到的class和bbox组成proposal, 再次进行mask预测和分类, 即重复stage 2和3.

InstanceFCN ★★

[Paper] Instace-sensitive Fully Convolutional Networks

[Year] ECCV 2016

[Authors] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, Jian Sun

[Pages]

[Description]

1) DL用于Instance-segmentation较早的一篇paper. 在FCN的基础上提出instance-sensitive的InstanceFCN, 通过将每个pixel相对于某instance的relative position进行assemble, 得到output instance candidate.
2) Instance-sensitive score maps: 将FCN的”each output pixel is a classifier of an object category”改造成”each output pixel is a classifier of relative positions of instances”. Instance assembling module: 将每个sliding window划分成k x k的网格, 对应于k^2个relative position. 相同网格中的像素取对应于相同位置的score map进行assemble.
3) 优点: InstanceFCN具有local coherence的优点, 且没有任何high-dimensional layer. 缺点: inference时将输入进行多尺度缩放来处理multi-scale问题, 感觉有点简单粗暴; 模型的输出只能分辨每个instance mask, 但不能得出每个instance的类别.
4) 没有找到开源代码, 对training和inference的具体实现没仔细研究.

MPA

[Paper] Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation

[Year] CVPR 2016 Oral 

[Authors] Shu Liu, Xiaojuan Qi, Jianping Shi, Hong Zhang, Jiaya Jia

[Pages]

[Description]

MultiPathNet

[Paper] A MultiPath Network for Object Detection

[Year] BMVC 2016 

[Authors] Sergey Zagoruyko, Adam Lerer, Tsung-Yi Lin, Pedro O. Pinheiro

[Pages] https://github.com/facebookresearch/multipathnet

[Description]

FCIS ★★

[Paper] Fully Convolutional Instance-aware Semantic Segmentation

[Year] CVPR 2017 Spotlight

[Authors] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, Yichen Wei  

[Pages] https://github.com/msracver/FCIS

[Description]

1) 基于InstanceFCN中position sensitive score map的概念, 提出了end to end的可区分类别的实例分割方法.

2) backbone为resnet-101,从conv4开始分为两支, RPN一支产生ROI, 另一支产生2K^2(C+1)个位置敏感score map. 之后对每个ROI进行根据K*K个相对位置进行assemble, 每类输出ROI inside 和ROI outside两个score map. 根据inside和outside score map的大小组合可以得到一个pixel的两个信息: 1.它是否位于某个目标的相应位置上; 2.它是否属于该目标分割的前景. 最后通过max和softmax操作得到ROI的类别和segmentation mask.

3) 个人总结, 这种encode K*K的相对位置的策略有几个好处, 1.对位置敏感, 这正是instance任务需要的; 2.对ROI的偏移有一定程度的鲁棒性; 3.可以使需要对每个ROI分别进行的subnetwork变得更小, 节省时间.

FastMask ★

[Paper] FastMask: Segment Multi-scale Object Candidates in One Shot

[Year] CVPR 2017 Spotlight

[Authors] Hexiang Hu, Shiyi Lan, Yuning Jiang, Zhimin Cao, Fei Sha

[Pages] https://github.com/voidrank/FastMask

[Description]

1) 粗读. 提出了一个body, neck, head的one-shot模型.
2) body net部分进行特征提取. 提取到的特征组成多尺度的特征金字塔, 分别送入共享参数的neck module提取multi-scale特征, neck module为residual neck. 得到的特征图进行降维后提取dense sliding window, sliding windows经batch normalization后送入head module, head module为attention head
3) neck module部分以2为步长对feature map进行下采样, 可能导致尺度过于稀疏. 因此提出two-stream FastMask architecture, 使scale更密集.

DWT★

[Paper] Deep Watershed Transformation for Instance Segmentation

[Year] CVPR 2017

[Authors] Min Bai, Raquel Urtasun

[Pages] https://github.com/min2209/dwt

[Description]

1) 用分水岭的思想做instance segmentation,分Direction Network和Watershed Transform Network两个阶段
2) Direction Network:计算pixel到最近边界的距离变换的单位梯度
3) Watershed Transform Network:以前一阶段得到的梯度为输入,计算16个Bin能量的概率,Bin 0表示边界部分的能量
4) 边界部分有相同的能量,避免over segmentation问题
5) 实验部分,计算confidence score没看懂,可以再研究一下
6) 能量Bin的划分,每个能量在算loss权重部分没看懂

BAIS★

[Paper] Boundary-aware Instance Segmentation

[Year] CVPR 2017

[Authors] =en”>Zeeshan Hayder, Xuming He, Mathieu Salzmann

[Pages] https://vitalab.github.io/deep-learning/2017/08/22/boundary-aware.html

[Description]

1) 提出一种基于距离变换的instance segmentation方法, 可以克服bounding box不准确的问题. 包括三部分: 提取bounding box, 预测object mask (OMN), object分类, 整个网络都是可微的, 可端到端训练;
2) OMN基于目标内像素到其边界的距离变换, 设计网络得到K个boundary-aware object mask, 然后decode成完整的object mask;
3) 仿照MNC, 采用multi-stage策略: 根据上一阶段得到的object mask, 对bounding box进行refine;
4) 实验及一些具体实现没研究, 如object mask与bounding box feature是如何结合起来的等;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值