论文笔记之Synthetic Data for Text Localisation in Natural Images(人工合成带有文本的图片)

本文详细解析VGG实验室2016年的CVPR论文,介绍如何使用synthText方法人工合成带有文本的自然图片。通过获取语义和深度信息,筛选候选区域,对区域进行图像变换并填充文本,最终生成带有准确文本位置信息的合成图片。
摘要由CSDN通过智能技术生成

Synthetic Data for Text Localisation in Natural Images是VGG实验室2016年CVPR的一篇论文。

这篇论文所做的主要贡献有两点:

1.将word人工的嵌入到自然图片中,人工生成带有文本的图片(synthText)。

2.提出一种FRCN的网络来检测文本。

本文主要针对第一点贡献进行详细讲解,是如何人工生成数据。
源代码:here

一.输入与输出

我们知道标签数据的获取是昂贵的,但是对于深度学习模型,大量的标签数据又是必须的。这个时候,人工合成符合自然条件的合理的数据是十分有价值的,因此本文的出发点就是因为这个。

1.输入(一张原始的自然图片):

通过Google Image Search获得

这里写图片描述


2.输出(带有文本的图片,并且知道其文本的具体位置(因为是自己人工生成的)):

其中文本和图片本身并没有任何关系,文本内容,通过20Newsgroups获得

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值