目录
- 回溯算法
- 应用题目类型
- 算法思想
- 例题
- [78. 子集](https://leetcode-cn.com/problems/subsets/)
- [90. 子集 II](https://leetcode-cn.com/problems/subsets-ii/)
- [46. 全排列](https://leetcode-cn.com/problems/permutations/)
- [47. 全排列 II](https://leetcode-cn.com/problems/permutations-ii/)
- [39. 组合总和](https://leetcode-cn.com/problems/combination-sum/)
- [40. 组合总和 II](https://leetcode-cn.com/problems/combination-sum-ii/)
- 参考文章
回溯算法
应用题目类型
枚举,排列组合
算法思想
回溯算法的三要素:
1.有效结果:什么时候这算是一个答案,应该被加入到答案列表里
2.回溯的范围:我们下一个维度要考虑如何将当前层的答案和上一层的答案结合,并继续递归
3.剪枝条件:是不是存在某些情况遇到了之后就不需要再处理了
伪代码:
backtrack的公式:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
例题
以下例题均来自于力扣
78. 子集
题目:
给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
代码:
class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
res = []
n = len(nums)
def helper(i, tmp):
res.append(tmp)
for j in range(i, n):
helper(j + 1,tmp + [nums[j]] )
helper(0, [])
return res
90. 子集 II
题目:
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:
解集不能包含重复的子集。
示例:
输入: [1,2,2]
输出:
[ [2], [1], [1,2,2], [2,2], [1,2], [] ]
代码:
class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
if not nums:
return []
n = len(nums)
res = []
nums.sort()
def helper(idx, n, temp_list):
if temp_list not in res:
res.append(temp_list)
for i in range(idx, n):
helper(i + 1, n, temp_list + [nums[i]])
helper(0, n, [])
return res
46. 全排列
题目:
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出:
[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]
代码:
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
def backtrack(nums,tmp):
if not nums:
res.append(tmp)
return
for i in range(len(nums)):
backtrack(nums[:i] + nums[i+1:], tmp + [nums[i]])
res=[]
backtrack(nums,[])
return res
47. 全排列 II
题目:
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
输入:nums = [1,1,2]
输出:[[1,1,2], [1,2,1], [2,1,1]]
示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
代码:
class Solution(object):
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
res = []
def backtrace(partial, choices):
if not choices:
res.append(partial)
for choice in set(choices):
idx = choices.index(choice)
backtrace(partial + [choice], choices[:idx] + choices[idx+1:])
backtrace([], nums)
return res
39. 组合总和
题目:
给定一个无重复元素的数组 candidates 和一个目标数 target
找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
说明:
所有数字(包括 target)都是正整数。
解集不能包含重复的组合
示例 1:
输入:candidates = [2,3,6,7], target = 7,
所求解集为:
[ [7], [2,2,3] ]
示例 2:
输入:candidates = [2,3,5], target = 8,
所求解集为:
[ [2,2,2,2], [2,3,3], [3,5] ]
代码:
class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
candidates.sort()
res = []
def backtrack(candidates, target, tmp):
if target == 0:
res.append(tmp)
if target < 0:
return
for i in range(len(candidates)):
if candidates[i] > target:
break
backtrack(candidates[i:], target - candidates[i], tmp + [candidates[i]])
backtrack(candidates,target,[])
return res
40. 组合总和 II
题目:
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次。
说明:
所有数字(包括目标数)都是正整数。
解集不能包含重复的组合。
示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8,
所求解集为:
[ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5,
所求解集为:
[ [1,2,2], [5] ]
代码:
class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
candidates.sort()
n = len(candidates)
res = []
def backtrack(i, tmp):
if sum(tmp) == target:
res.append(tmp)
return
for j in range(i, n):
if sum(tmp) + candidates[j] > target : break
if j > i and candidates[j] == candidates[j-1]:continue
backtrack(j + 1, tmp + [candidates[j]])
backtrack(0, [])
return res
参考文章
https://leetcode-cn.com/problems/subsets/solution/hui-su-suan-fa-by-powcai-5/
https://leetcode-cn.com/problems/permutations-ii/solution/hot-100-47quan-pai-lie-ii-python3-hui-su-kao-lu-zh/