机器学习中的数学(下)

本文详细介绍了机器学习中的一些重要不等式,包括霍夫丁不等式、Sanov定理、McDiarmid不等式、正态分布下界和最大值不等式,这些不等式在概率和统计分析中起到关键作用。
摘要由CSDN通过智能技术生成

4、机器学习中的不等式

  上篇博文《机器学习中的数学(中)》讲述了机器学习中的概率论的问题,这篇博文主要阐述一些机器学习中常用的不等式。

  由于每个不等式的证明均比较复杂,所以本博文暂不给出证明过程。学会利用不等式即可。

4.1 霍夫丁不等式(Hoeffding’s inequality)

定义4.1:霍夫丁引理(Hoeffding’s lemma) X X X是随机变量, E [ X ] = 0 \mathbb E[X]=0 E[X]=0 a ≤ X ≤ b a\le X\le b aXb并且 b > a b>a b>a。对任意的 t > 0 t>0 t>0,下述不等式成立

E [ e t X ] ≤ e t 2 ( b − a ) 2 8 . \mathbb E[e^{tX}]\le e^{\frac{t^2(b-a)^2}{8}}. E[etX]e8t2(ba)2.

定义4.2:霍夫丁不等式(Hoeffding’s inequality) X 1 , ⋯   , X m X_1,\cdots,X_m X1,,Xm是独立随机变量并且 X i X_i Xi区间 [ a i , b i ] [a_i,b_i] [ai,bi]中取值( i ∈ [ m ] i\in[m] i[m])。对任意 ϵ > 0 \epsilon>0 ϵ>0,对 S m = ∑ i = 1 m X i S_m=\sum_{i=1}^mX_i Sm=i=1mXi下述不等式成立

P [ S m − E [ S m ] ≥ ϵ ] ≤ exp ⁡ − 2 ϵ 2 ∑ i = 1 m ( b i − a i ) 2 \mathbb P[S_m-\mathbb E[S_m]\ge\epsilon]\le\exp{\frac{-2\epsilon^2}{\sum_{i=1}^m(b_i-a_i)^2}} P[SmE[Sm]<

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
介绍了机器数学知识,假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。 假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。 假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。 假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值