1.基本概念
多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式的回归分析方法。如果自变量只有一个 时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。
1.在一元回归分析中,如果依变量y与自变量x的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。
2.多项式回归的最大优点就是可以通过增加x的高次项对实测点进行逼近,直至满意为止。
3.事实上,多项式回归可以处理相当一类非线性问题,它在回归分析 中占有重要的地位,因为任一函数都可以分段用多项式来逼近。
2.实例
我们在前面已经根据已知的房屋成交价和房屋的尺寸进行了线 性回归,继而可以对已知房屋尺寸,而未知房屋成交价格的实例进行了成 交价格的预测,但是在实际的应用中这样的拟合往往不够好,因此我们在 此对该数据集进行多项式回归。
目标:对房屋成交信息建立多项式回归方程,并依据回归方程对房屋价格进行预测
import matplotlib.pyplot as plt import numpy as np from sklearn import linear_model #导入线性模型和多项式特征构造模块 from sklearn.preprocessing import PolynomialFeatures datasets_X =[] datasets_Y =[] fr =open('prices.txt','r') #一次读取整个文件。 lines =fr.readlines() #逐行进行操作,循环遍历所有数据 for line in lines: #去除数据文件中的逗号 items =line.strip().split(',') #将读取的数据转换为int型,并分别写入datasets_X和datasets_Y。 datasets_X.append(int(items[0])) datasets_Y.append(int(items[1])) #求得datasets_X的长度,即为数据的总数。 length =len(datasets_X) #将datasets_X转化为数组, 并变为二维,以符合线性回 归拟合函数输入参数要求 datasets_X= np.array(datasets_X).reshape([length,1]) #将datasets_Y转化为数组 datasets_Y=np.array(datasets_Y) minX =min(datasets_X) maxX =max(datasets_X) #以数据datasets_X的最大值和最小值为范围,建立等差数列,方便后续画图。 X=np.arange(minX,maxX).reshape([-1,1]) #degree=2表示建立datasets_X的二 次多项式特征X_poly。 poly_reg =PolynomialFeatures(degree=2) X_ploy =poly_reg.fit_transform(datasets_X) lin_reg_2=linear_model.LinearRegression() lin_reg_2.fit(X_ploy,datasets_Y) #查看回归方程系数 print('Cofficients:',lin_reg_2.coef_) #查看回归方程截距 print('intercept',lin_reg_2.intercept_) plt.scatter(datasets_X,datasets_Y,color='red') plt.plot(X,lin_reg_2.predict(poly_reg.fit_transform(X)),color='blue') plt.xlabel('Area') plt.ylabel('Price') plt.show()
运行结果:
Cofficients: [0.00000000e+00 4.93982848e-02 1.89186822e-05] intercept 151.8469675050044
通过多项式回归拟合的曲线与 数据点的关系如下图所示。依据该 多项式回归方程即可通过房屋的尺 寸,来预测房屋的成交价格。