G-Pen: 一种用于极度模糊人脸恢复的新方法
本文介绍了一种名为G-Pen(GenPrior Embedded Network)的新方法,它可以有效地恢复极度模糊的人脸图像。此前,许多方法尝试解决这一难题,例如DFDnet利用人脸特征库进行匹配,或者通过投票机制进行降维匹配,但都没有取得显著成果。
G-Pen的独特之处在于将模糊图像嵌入到一个先验模型中,然后将其与高质量人脸进行映射,从而将原本的一对多逆问题简化为一对一映射问题。这使得G-Pen能够有效地恢复极度模糊的人脸,并生成较为准确的结果,而不会出现其他方法中常见的扭曲或伪影。
尽管G-Pen在恢复极度模糊人脸方面取得了突破性进展,但在标准人脸恢复方面仍存在一些局限性。与MyHeritage.com等商业方法相比,G-Pen在去噪和修复物理损伤方面表现较差,并可能产生一些明显的伪影。因此,G-Pen在人脸恢复领域尚处于起步阶段,未来还有很大的提升空间。
另一方面,G-Pen还具备彩色化功能,能够将灰度图像还原为逼真的彩色图像,并在官方演示中表现出色。然而,在实际应用中,尤其是针对旧图像,其效果并不如演示中那样理想。
总而言之,G-Pen为恢复极度模糊人脸提供了一种新的解决方案,但其在标准人脸恢复和彩色化方面仍需进一步改进。未来,随着技术的发展,G-Pen有望在人脸恢复领域取得更大的突破。
在本视频中,我介绍了这项名为 GPEN(GAN 先验嵌入网络)的新研究。只要轮廓视图周围有清晰的轮廓,它就可以修复、放大和增强极度退化和像素化的面部图像。对于修复非常古老的图像(包括其他研究尚未实现的面部图像)来说,这非常有用。毫无疑问,它是最先进的极度退化面部图像放大器。然而,它仍然面临着与面部放大竞争的激烈竞争,而这些面部放大图像的退化程度要低得多……有趣的是,戴着高帽子的那个人(1:27)是观众要求放大和修复的。我已经把它保留了 6 个多月作为基线,用来测试面部放大功能,而 GPEN 是我唯一成功使用的工具!GPEN(陶等,2021)[论文] https://arxiv.org/abs/2105.06070[官方 GitHub] https://github.com/yangxy/GPEN[Colab GitHub 页面] https://github.com/bycloudai/GPEN-colab[Colab 教程] https://youtu.be/2HdFV4k_CCY