hdu4685

本文介绍了一个使用C++实现的二分图最大匹配算法,并结合Tarjan算法进行同构分量压缩处理,旨在解决一类特定的图论问题。代码中详细展示了节点与边的定义、增广路径搜索、Tarjan强连通分量算法等关键步骤。
摘要由CSDN通过智能技术生成
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stack>
#include<vector>
using namespace std;
struct edge
{
    int to,next;
}ee1[2005*2005],ee2[2005*2005];
int e1[2005],e2[2005],ecnt1,ecnt2;
void addedge1(int u,int v)
{
    ee1[ecnt1].to=v;ee1[ecnt1].next=e1[u];e1[u]=ecnt1++;
}
void addedge2(int u,int v)
{
    ee2[ecnt2].to=v;ee2[ecnt2].next=e2[u];e2[u]=ecnt2++;
}
int n,m,n2,m2;
bool used[1005];
int match[1005],to[1005];
bool dfs(int u)
{
    int i,j,v;
    for(i=e1[u];i!=-1;i=ee1[i].next)
    {
        v=ee1[i].to;
        if(!used[v])
        {
            used[v]=true;
            if(match[v]==-1||dfs(match[v]))
            {
                match[v]=u;
                return true;
            }
        }
    }
    return false;
}
int hungry()
{
    memset(match,-1,sizeof(match));
    int i,ret=0;
    for(i=1;i<=n;++i)
    {
        memset(used,false,sizeof(used));
        if(dfs(i))
            ret++;
    }
    return ret;
}
stack<int> stk;
int dfn[1005],low[1005],ind,bel[1005],tcnt;
bool ins[1005];
void dfs2(int u)
{
    int i,v;
    dfn[u]=low[u]=++ind;
    stk.push(u);ins[u]=true;
    for(i=e2[u];i!=-1;i=ee2[i].next)
    {
        v=ee2[i].to;
        if(dfn[v]==-1)
        {
            dfs2(v);
            low[u]=min(low[u],low[v]);
        }
        else if(ins[v])
        {
            low[u]=min(low[u],dfn[v]);
        }
    }
    if(dfn[u]==low[u])
    {
        ++tcnt;
        do{
            v=stk.top();stk.pop();ins[v]=false;
            bel[v]=tcnt;
        }while(v!=u);
    }
}
void tarjan()
{
    int i;
    memset(dfn,-1,sizeof(dfn));
    memset(low,-1,sizeof(low));
    ind=0;tcnt=0;
    while(!stk.empty())
        stk.pop();
    memset(ins,false,sizeof(ins));
    for(i=1;i<=m2;++i)
    {
        if(dfn[i]==-1)
            dfs2(i);
    }
}
int ai[1005];
int main()
{
    int t,cas=0,i,j,k,t1,u,v,ccnt;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        memset(e1,-1,sizeof(e1));ecnt1=0;
        for(i=1;i<=n;++i)
        {
            scanf("%d",&k);
            while(k--)
            {
                scanf("%d",&j);
                addedge1(i,j);
            }
        }
        t1=hungry();
        memset(to,-1,sizeof(to));
        for(i=1;i<=m;++i)
        {
            if(match[i]!=-1)
                to[match[i]]=i;
        }
        n2=n;m2=m;
        if(t1!=n||t1!=m)
        {
            for(i=1;i<=n;++i)
            {
                if(to[i]==-1)
                {
                    ++m2;
                    to[i]=m2;match[m2]=i;
                    for(j=1;j<=n;++j)
                        addedge1(j,m2);
                }
            }
            for(i=1;i<=m;++i)
            {
                if(match[i]==-1)
                {
                    ++n2;
                    match[i]=n2;to[n2]=i;
                    for(j=1;j<=m;++j)
                        addedge1(n2,j);
                }
            }
        }
        memset(e2,-1,sizeof(e2));ecnt2=0;
        for(i=1;i<=m2;++i)
        {
            u=match[i];
            for(j=e1[u];j!=-1;j=ee1[j].next)
            {
                v=ee1[j].to;
                addedge2(i,v);
            }
        }
        tarjan();
        printf("Case #%d:\n",++cas);
        for(i=1;i<=n;++i)
        {
            ccnt=0;
            for(j=e1[i];j!=-1;j=ee1[j].next)
            {
                v=ee1[j].to;
                if(v<=m&&bel[v]==bel[to[i]])
                {
                    ai[ccnt++]=v;
                }
            }
            sort(ai,ai+ccnt);
            printf("%d",ccnt);
            for(j=0;j<ccnt;++j)
                printf(" %d",ai[j]);
            printf("\n");
        }
    }
    return 0;
}

匹配问题好久没做了。。。写个二分图基数匹配还看了一眼模板。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值