基于Python的基准回归模型
在机器学习中,回归模型是用于预测连续值输出的重要工具。基准回归模型是指一组简单但有效的模型,用于比较和评估更复杂的回归算法。在本文中,我们将使用Python实现几个基准回归模型,并展示它们在一个示例数据集上的表现。
首先,我们需要导入所需的库和模块。在这个例子中,我们将使用NumPy进行数值计算,使用Scikit-learn库中的模型和评估工具,以及Matplotlib库进行可视化。
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble
Python实现基准回归模型
本文介绍了如何使用Python实现基准回归模型,包括线性回归、决策树回归和随机森林回归。通过生成示例数据集,训练模型,计算均方误差并进行可视化,来评估和比较模型的性能。
订阅专栏 解锁全文
3629

被折叠的 条评论
为什么被折叠?



