基于Python的基准回归模型

299 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Python实现基准回归模型,包括线性回归、决策树回归和随机森林回归。通过生成示例数据集,训练模型,计算均方误差并进行可视化,来评估和比较模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Python的基准回归模型

在机器学习中,回归模型是用于预测连续值输出的重要工具。基准回归模型是指一组简单但有效的模型,用于比较和评估更复杂的回归算法。在本文中,我们将使用Python实现几个基准回归模型,并展示它们在一个示例数据集上的表现。

首先,我们需要导入所需的库和模块。在这个例子中,我们将使用NumPy进行数值计算,使用Scikit-learn库中的模型和评估工具,以及Matplotlib库进行可视化。

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值