六足机器人步态规划方法

六足机器人的步态规划方法方法:

固定步态规划:

交替三角支撑步态(Alternating Tripod Gait):这是最常见的步态之一。在任何时候,六条腿中的三条腿处于支撑阶段,另外三条腿处于摆动阶段。这样可以保证机器人的稳定性,适合于平坦的地面。
示例代码:

% 定义参数
num_legs = 6; % 机器人的腿数
step_length = 0.1; % 步长(米)
cycle_time = 1; % 一个步态周期的总时间(秒)

% 定义每条腿的相位偏移(以周期时间的分数表示)
phase_offsets = [0, 0.5, 0.33, 0.83, 0.67, 0.17];

% 定义时间向量
time = linspace(0, cycle_time, 100);

% 初始化腿的位置
leg_positions = zeros(num_legs, length(time));

% 计算每条腿的位置
for i = 1:num_legs
    phase = phase_offsets(i) * cycle_time; % 计算相位时间
    for t = 1:length(time)
        % 判断当前时间是否在支撑阶段或摆动阶段
        if mod(time(t) - phase, cycle_time) < cycle_time / 2
            leg_positions(i, t) = -step_length / 2; % 支撑阶段位置
        else
            leg_positions(i, t) = step_length / 2; % 摆动阶段位置
        end
    end
end

% 绘制腿的位置曲线
figure;
hold on;
for i = 1:num_legs
    plot(time, leg_positions(i, :)); % 绘制每条腿的位置
end
xlabel('时间 (秒)'); % x轴标签
ylabel('腿的位置 (米)'); % y轴标签
legend('腿 1', '腿 2', '腿 3', '腿 4', '腿 5', '腿 6'); % 图例
title('交替三角支撑步态'); % 标题
hold off;

波动步态(Wave Gait):这种步态中,每次只有一条腿处于摆动阶段,其余五条腿处于支撑阶段。这种步态速度较慢,但可以在不平坦的地面上提供更好的稳定性。
示例代码:

% 定义参数
num_legs = 6; % 机器人的腿数
step_length = 0.1; % 步长(米)
cycle_time = 1; % 一个步态周期的总时间(秒)

% 定义每条腿的相位偏移(以周期时间的分数表示)
phase_offsets = [0, 1/6, 2/6, 3/6, 4/6, 5/6];

% 定义时间向量
time = linspace(0, cycle_time, 100);

% 初始化腿的位置
leg_positions = zeros(num_legs, length(time));

% 计算每条腿的位置
for i = 1:num_legs
    phase = phase_offsets(i) * cycle_time; % 计算相位时间
    for t = 1:length(time)
        % 判断当前时间是否在支撑阶段或摆动阶段
        if mod(time(t) - phase, cycle_time) < cycle_time / 2
            leg_positions(i, t) = -step_length / 2; % 支撑阶段位置
        else
            leg_positions(i, t) = step_length / 2; % 摆动阶段位置
        end
    end
end

% 绘制腿的位置曲线
figure;
hold on;
for i = 1:num_legs
    plot(time, leg_positions(i, :)); % 绘制每条腿的位置
end
xlabel('时间 (秒)'); % x轴标签
ylabel('腿的位置 (米)'); % y轴标签
legend('腿 1', '腿 2', '腿 3', '腿 4', '腿 5', '腿 6'); % 图例
title('波动步态'); % 标题
hold off;

周期步态规划:

对称周期步态:所有腿的步态周期相同,但相位不同,通过调整每条腿的相位,可以实现不同的步态模式,如交替三角支撑步态。

不对称周期步态:不同腿的步态周期不同,可以用于适应复杂地形或在部分腿故障情况下保持运动。
示例代码:

% 定义参数
num_legs = 6; % 机器人的腿数
step_length = 0.1; % 步长(米)

% 定义每条腿的步态周期(秒)
cycle_times = [1, 1.2, 0.8, 1.1, 0.9, 1.3];

% 定义每条腿的相位偏移(以各自周期时间的分数表示)
phase_offsets = [0, 0.3, 0.6, 0.2, 0.4, 0.5];

% 定义时间向量
total_time = 10; % 总时间(秒)
dt = 0.01; % 时间步长(秒)
time = 0:dt:total_time; % 时间向量

% 初始化腿的位置
leg_positions = zeros(num_legs, length(time));

% 计算每条腿的位置
for i = 1:num_legs
    cycle_time = cycle_times(i); % 获取当前腿的步态周期
    phase = phase_offsets(i) * cycle_time; % 计算相位时间
    for t = 1:length(time)
        % 判断当前时间是否在支撑阶段或摆动阶段
        if mod(time(t) - phase, cycle_time) < cycle_time / 2
            leg_positions(i, t) = -step_length / 2; % 支撑阶段位置
        else
            leg_positions(i, t) = step_length / 2; % 摆动阶段位置
        end
    end
end

% 绘制腿的位置曲线
figure;
hold on;
for i = 1:num_legs
    plot(time, leg_positions(i, :)); % 绘制每条腿的位置
end
xlabel('时间 (秒)'); % x轴标签
ylabel('腿的位置 (米)'); % y轴标签
legend('腿 1', '腿 2', '腿 3', '腿 4', '腿 5', '腿 6'); % 图例
title('不对称周期步态'); % 标题
hold off;

事件驱动步态规划:
通过传感器检测机器人与地面之间的相互作用,实时调整每条腿的动作,以应对复杂和动态变化的环境。例如,通过力传感器检测支撑腿的受力情况,及时调整摆动腿的位置和速度。
示例代码:

% 定义参数
num_legs = 6; % 机器人的腿数
step_length = 0.1; % 步长(米)
cycle_time = 1; % 一个步态周期的总时间(秒)

% 初始化腿的位置和状态
leg_positions = zeros(num_legs, 1);
leg_states = ones(num_legs, 1); % 1表示支撑阶段,0表示摆动阶段
leg_timers = zeros(num_legs, 1); % 记录每条腿在当前阶段的时间

% 设置时间步长和总时间
dt = 0.01; % 时间步长(秒)
total_time = 10; % 总时间(秒)
time = 0:dt:total_time; % 时间向量

% 初始化传感器数据(触地传感器,1表示接触地面,0表示离开地面)
touch_sensors = ones(num_legs, 1);

% 初始化腿的位置记录矩阵
leg_positions_history = zeros(num_legs, length(time));

% 事件驱动步态规划
for t = 1:length(time)
    for i = 1:num_legs
        if leg_states(i) == 1 % 支撑阶段
            leg_positions(i) = -step_length / 2;
            if touch_sensors(i) == 0 % 检测到腿离开地面
                leg_states(i) = 0; % 切换到摆动阶段
                leg_timers(i) = 0; % 重置定时器
            end
        else % 摆动阶段
            leg_positions(i) = step_length / 2;
            if touch_sensors(i) == 1 % 检测到腿接触地面
                leg_states(i) = 1; % 切换到支撑阶段
                leg_timers(i) = 0; % 重置定时器
            end
        end
        leg_timers(i) = leg_timers(i) + dt; % 更新定时器
    end
    % 更新历史记录
    leg_positions_history(:, t) = leg_positions;
    
    % 模拟传感器数据变化(这里只是一个简单的模拟,实际情况应根据具体传感器数据)
    if mod(t, 50) == 0
        touch_sensors = 1 - touch_sensors; % 模拟传感器的触地/离地变化
    end
end

% 绘制腿的位置曲线
figure;
hold on;
for i = 1:num_legs
    plot(time, leg_positions_history(i, :)); % 绘制每条腿的位置
end
xlabel('时间 (秒)'); % x轴标签
ylabel('腿的位置 (米)'); % y轴标签
legend('腿 1', '腿 2', '腿 3', '腿 4', '腿 5', '腿 6'); % 图例
title('事件驱动步态规划'); % 标题
hold off;

优化步态规划:

利用优化算法,如遗传算法、粒子群优化、梯度下降等,对步态参数进行优化,以实现特定目标,如最小能耗、最大稳定性或最快速度。这种方法通常需要大量的计算资源,但可以获得最优的步态参数。
示例代码:使用遗传算法(Genetic Algorithm, GA)来优化机器人的步态参数
MATLAB中需要安装了遗传算法工具箱(Genetic Algorithm Toolbox)

% 定义机器人参数
num_legs = 6; % 机器人的腿数
step_length = 0.1; % 步长(米)

% 优化目标函数
function cost = gait_cost_function(params)
    num_legs = 6;
    step_length = 0.1;
    cycle_time = params(1:num_legs); % 提取每条腿的步态周期
    phase_offsets = params(num_legs+1:end); % 提取每条腿的相位偏移
    
    % 模拟步态
    total_time = 10; % 总时间(秒)
    dt = 0.01; % 时间步长(秒)
    time = 0:dt:total_time; % 时间向量
    leg_positions = zeros(num_legs, length(time));
    
    for i = 1:num_legs
        phase = phase_offsets(i) * cycle_time(i); % 计算相位时间
        for t = 1:length(time)
            if mod(time(t) - phase, cycle_time(i)) < cycle_time(i) / 2
                leg_positions(i, t) = -step_length / 2; % 支撑阶段位置
            else
                leg_positions(i, t) = step_length / 2; % 摆动阶段位置
            end
        end
    end
    
    % 计算成本函数(这里以腿位置变化的平滑度作为例子)
    % 实际应用中,可以根据具体需求定义目标函数
    cost = 0;
    for i = 1:num_legs
        cost = cost + sum(abs(diff(leg_positions(i, :))));
    end
end

% 设置遗传算法参数
num_params = 12; % 6条腿的步态周期和6条腿的相位偏移
lb = [0.5 * ones(1, 6), zeros(1, 6)]; % 参数下界
ub = [2 * ones(1, 6), ones(1, 6)]; % 参数上界

% 调用遗传算法
options = optimoptions('ga', 'PopulationSize', 50, 'MaxGenerations', 100);
[optimal_params, optimal_cost] = ga(@gait_cost_function, num_params, [], [], [], [], lb, ub, [], options);

% 提取优化结果
optimal_cycle_time = optimal_params(1:num_legs);
optimal_phase_offsets = optimal_params(num_legs+1:end);

% 显示优化结果
disp('优化后的步态周期:');
disp(optimal_cycle_time);
disp('优化后的相位偏移:');
disp(optimal_phase_offsets);

% 绘制优化后的腿的位置曲线
total_time = 10; % 总时间(秒)
dt = 0.01; % 时间步长(秒)
time = 0:dt:total_time; % 时间向量
leg_positions = zeros(num_legs, length(time));

for i = 1:num_legs
    phase = optimal_phase_offsets(i) * optimal_cycle_time(i); % 计算相位时间
    for t = 1:length(time)
        if mod(time(t) - phase, optimal_cycle_time(i)) < optimal_cycle_time(i) / 2
            leg_positions(i, t) = -step_length / 2; % 支撑阶段位置
        else
            leg_positions(i, t) = step_length / 2; % 摆动阶段位置
        end
    end
end

% 绘制腿的位置曲线
figure;
hold on;
for i = 1:num_legs
    plot(time, leg_positions(i, :)); % 绘制每条腿的位置
end
xlabel('时间 (秒)'); % x轴标签
ylabel('腿的位置 (米)'); % y轴标签
legend('腿 1', '腿 2', '腿 3', '腿 4', '腿 5', '腿 6'); % 图例
title('优化后的步态规划'); % 标题
hold off;

学习和自适应步态规划:

利用机器学习和强化学习算法,根据机器人的反馈数据,逐步调整和改进步态。比如,利用深度强化学习算法,让机器人通过试错学习最佳的步态模式。
示例代码:使用Q-learning算法实现六足机器人自适应步态规划的简单MATLAB代码示例

% 定义参数
num_legs = 6; % 机器人的腿数
step_length = 0.1; % 步长(米)
cycle_time = 1; % 一个步态周期的总时间(秒)
num_states = 10; % 状态数量
num_actions = 4; % 动作数量(例如,增加或减少步长,增加或减少周期时间)

% 初始化Q表
Q = zeros(num_states, num_actions);

% 学习参数
alpha = 0.1; % 学习率
gamma = 0.9; % 折扣因子
epsilon = 0.1; % 探索率
num_episodes = 1000; % 训练的回合数

% 初始化步态参数
current_step_length = step_length;
current_cycle_time = cycle_time;

% 状态转换函数
function state = get_state(step_length, cycle_time)
    state = round((step_length - 0.05) / 0.01) + 1;
end

% 奖励函数
function reward = get_reward(step_length, cycle_time)
    % 简单的奖励函数示例,可以根据具体需求调整
    reward = -abs(step_length - 0.1) - abs(cycle_time - 1);
end

% 动作执行函数
function [new_step_length, new_cycle_time] = take_action(step_length, cycle_time, action)
    switch action
        case 1
            new_step_length = step_length + 0.01;
            new_cycle_time = cycle_time;
        case 2
            new_step_length = step_length - 0.01;
            new_cycle_time = cycle_time;
        case 3
            new_step_length = step_length;
            new_cycle_time = cycle_time + 0.1;
        case 4
            new_step_length = step_length;
            new_cycle_time = cycle_time - 0.1;
    end
    new_step_length = max(0.05, min(new_step_length, 0.15));
    new_cycle_time = max(0.5, min(new_cycle_time, 2));
end

% Q-learning训练过程
for episode = 1:num_episodes
    % 初始化状态
    current_state = get_state(current_step_length, current_cycle_time);
    
    for t = 1:100 % 每个回合的最大时间步数
        % 选择动作
        if rand < epsilon
            action = randi(num_actions); % 探索
        else
            [~, action] = max(Q(current_state, :)); % 利用
        end
        
        % 执行动作
        [new_step_length, new_cycle_time] = take_action(current_step_length, current_cycle_time, action);
        
        % 获取新的状态和奖励
        new_state = get_state(new_step_length, new_cycle_time);
        reward = get_reward(new_step_length, new_cycle_time);
        
        % 更新Q表
        Q(current_state, action) = Q(current_state, action) + ...
            alpha * (reward + gamma * max(Q(new_state, :)) - Q(current_state, action));
        
        % 更新当前状态
        current_step_length = new_step_length;
        current_cycle_time = new_cycle_time;
        current_state = new_state;
    end
end

% 使用学习到的Q表进行步态规划
total_time = 10; % 总时间(秒)
dt = 0.01; % 时间步长(秒)
time = 0:dt:total_time; % 时间向量
leg_positions = zeros(num_legs, length(time));

optimal_action = zeros(num_legs, 1);

for i = 1:num_legs
    % 根据Q表选择最优动作
    current_state = get_state(current_step_length, current_cycle_time);
    [~, optimal_action(i)] = max(Q(current_state, :));
    phase = (i-1) / num_legs * cycle_time; % 计算相位时间
    
    for t = 1:length(time)
        % 判断当前时间是否在支撑阶段或摆动阶段
        if mod(time(t) - phase, current_cycle_time) < current_cycle_time / 2
            leg_positions(i, t) = -current_step_length / 2; % 支撑阶段位置
        else
            leg_positions(i, t) = current_step_length / 2; % 摆动阶段位置
        end
    end
end

% 绘制腿的位置曲线
figure;
hold on;
for i = 1:num_legs
    plot(time, leg_positions(i, :)); % 绘制每条腿的位置
end
xlabel('时间 (秒)'); % x轴标签
ylabel('腿的位置 (米)'); % y轴标签
legend('腿 1', '腿 2', '腿 3', '腿 4', '腿 5', '腿 6'); % 图例
title('学习和自适应步态规划'); % 标题
hold off;

### STM32机器人步态控制实现方法 #### 一、硬件平台搭建 为了实现机器人步态控制,首先需要构建一个稳定的硬件平台。该平台通常由STM32微控制器为核心处理器,连接多个舵机来驱动每条腿的动作[^3]。 #### 二、软件架构设计 在软件方面,采用模块化的设计思路可以有效提高系统的可维护性和扩展性。主要分为以下几个部分: - **底层驱动层**:负责与各个传感器和执行机构通信,如读取角度编码器数据、发送PWM信号给舵机等操作。 - **中间件服务层**:提供通用的功能函数库和服务接口,比如姿态估计算法、逆运动学求解等功能。 - **应用逻辑层**:定义具体的任务流程,例如设定目标位姿、计算各关节的角度变化量并下发指令至对应的电机。 对于12自由度的机器人而言,在进行步态规划时需考虑如何使所有腿部动作同步且平滑过渡,从而确保整个机体能够稳定前行或转向而不倾覆[^2]。 #### 三、具体实施步骤概述 针对上述提到的不同层次的任务需求,以下是关于如何利用STM32实现这些功能的具体描述: ##### 初始化设置 启动阶段要初始化所有的外设资源,并加载预存于Flash中的默认参数配置表;同时开启定时中断用于周期性的状态监测与更新处理。 ##### 姿态感知环节 通过安装IMU惯性测量单元获取当前机身的空间方位信息(俯仰角/横滚角),以此作为反馈调节的基础依据之一。 ##### 路径规划决策 根据实际应用场景的要求制定相应的路径方案——直线行走还是曲线转弯?在此基础上进一步细化分解成一系列离散的时间片段内的子目标点集合。 ##### 动作序列生成 基于前述所得的目标坐标系下的期望终点位置,运用正反向动力学模型推导出每一时刻下所需调整到的理想关节角度值集合作为下一步待执行命令列表的一部分内容输入源。 ##### 执行与监控循环 最后进入持续运行模式当中去,不断重复着从接收最新一轮次的位置请求直至完成相应肢体摆动这一系列过程的同时还要兼顾实时检测异常情况的发生以便及时采取措施加以应对纠正偏差现象保持整体结构平衡不倒。 ```c // 示例代码展示了一个简单的PID控制器用于调节舵机角度 void pid_control(float *target_angle, float current_angle){ static float last_error = 0; const float Kp = 2.0f; // 比例系数 const float Ki = 0.5f; // 积分系数 const float Kd = 1.0f; // 微分系数 float error = (*target_angle) - (current_angle); float Pout = Kp * error; static float Iout = 0; Iout += Ki * error; float Dout = Kd * (error - last_error); int output = Pout + Iout + Dout; set_servo_position(output); // 设置舵机位置 last_error = error; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值