Tableau 超市经典案例之退货分析(三)

关注微信公共号:小程在线

关注CSDN博客:程志伟的博客

 

三、退货产品类型

 

         退货是指在经销商收货时货物完好正常收入, 但在其负责销售期间因各种原因未能售出, 根据销售协议可以退回产品的退货行为。

操作步骤:
1.将维度下的“类别”和“子类别”拖放到行功能区, 将“订单日期”拖放到列功能区。


2.将维度下的“销售额”拖放到“标记”卡的“颜色”中。

 

3.将维度下的“销售额”拖放到“标记”卡的“文本”中。


4.将维度下的“是否退回”拖放到“筛选器”上, 并选择“显示筛选器”。

 

5.优化。


6.完成。
关于此篇文章的任何疑问,请在下方留言。

 

### 使用 Tableau 进行超市退货预测分析的方法 在进行超市退货预测分析时,可以遵循以下方法来构建模型并完成可视化。以下是详细的实现过程: #### 1. 数据准备 为了进行有效的退货预测分析,需要确保数据集中包含足够的特征以支持建模和预测工作。根据已有描述,订单表为主要的数据源[^2]。此表中应至少包含以下字段: - **Order ID**: 订单唯一标识符。 - **Product ID**: 商品唯一标识符。 - **Customer ID**: 客户唯一标识符。 - **Sales Amount**: 销售金额。 - **Profit/Loss**: 利润或亏损情况。 - **Return Status**: 是否退货。 如果原始数据未包含 `Return Status` 字段,则可以通过连接退货表与订单表生成这一列。具体操作如下: ```sql SELECT o.OrderID, o.CustomerID, o.ProductID, r.ReturnStatus FROM Orders o LEFT JOIN Returns r ON o.OrderID = r.OrderID; ``` #### 2. 创建退货率指标 计算每种商品、每位客户的退货比例可以帮助识别高风险的商品或客户群体。创建一个新的度量标准——退货(Return Rate),其定义为: \[ \text{Return Rate} = \frac{\text{Number of Returned Items}}{\text{Total Number of Purchased Items}} \] 在 Tableau 中可通过自定义计算字段实现: ```plaintext SUM(IF [ReturnStatus] = 'Yes' THEN 1 ELSE 0 END) / COUNT([OrderID]) ``` 上述公式表示统计所有被标记为“已退货”的记录数占总订单数量的比例[^3]。 #### 3. 时间序列分析 对于历史退货模式的理解有助于未来趋势的判断。因此,可绘制时间维度上的退货频率曲线图。例如按月汇总每月发生的退货次数,并观察是否存在季节性波动或其他规律性的变化。 设置视图参数时选择日期字段作为柱状图X轴变量;Y轴则放置之前建立好的退货计数值或者百分比形式的结果。这样便能直观看出哪些时间段内出现了较多退货行为。 #### 4. 地理空间分布探索 考虑到不同区域可能存在差异化的消费习惯和服务质量反馈效果,在地图上标注各省市自治区内的平均退货水平也是很有必要的一步。借助地理编码功能自动匹配地址信息到地理位置坐标系当中去呈现出来。 从先前的研究成果得知某些特定区域内长期维持着较高的负收益状态而未能得到有效改善的情况存在可能性较大[见前文提到过的关于利润方面的讨论]。所以特别关注这些地方是否有异常高的退货现象发生就显得尤为重要起来。 #### 5. 高级机器学习集成(外部工具辅助) 虽然Tableau本身不具备复杂的算法训练能力,但它能够很好地与其他具备此类技能的应用程序相结合共同发挥作用。比如Python中的Scikit-Learn库就可以用来开发更加精确可靠的预测模型之后再导入回Tableau做最终展现处理。 假设我们已经得到了一个经过良好调参后的随机森林分类器用于估计某个给定条件下某笔交易是否会成为一次成功的退货请求的话,那么只需要把相应的概率得分导出保存成CSV文件格式然后再上传至Tableau平台之上即可轻松制作交互式的仪表板界面供决策者参考使用了。 --- ### 示例代码片段 下面给出一段简单的 Python 脚本示例,演示如何基于 Scikit-Learn 构造基本的二元分类回归树来进行初步预测: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score # 加载数据集 data = pd.read_csv('supermarket_data.csv') # 特征工程 - 提取有用特征 features = ['Sales', 'Profit', 'ShippingCost'] target = 'IsReturned' X_train, X_test, y_train, y_test = train_test_split(data[features], data[target], test_size=0.2) clf = DecisionTreeClassifier() clf.fit(X_train, y_train) predictions = clf.predict(X_test) print(f"Accuracy: {accuracy_score(y_test, predictions)}") # 导出预测结果以便后续加载入Tableau results_df = pd.DataFrame({'Predicted_Return': predictions}) results_df.to_csv('predicted_returns.csv', index=False) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值