退费分析

通过对一家K12在线教育机构6月份订单的退费情况分析,发现整体退费率高达14.3%,主要集中在消耗课时1-20课耗的学生群体,尤其是六年级和初中阶段的新签客户。部分销售提交退费数量过多,存在骗单行为。分析建议公司完善销售签单的处罚措施,加强学员跟踪服务,及时解决家长疑问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

大家好,我叫蘅芜,目前在一家K12在线教育机构做数据运营。今日和大家聊聊之前做的一个退费分析。
9月的一个中午,经理找到我:我们6月份的订单现在还有用户提交退费。你能不能分析一下具体原因,然后找到问题的责任所在?
当时我还在午休,哎。好吧好吧,既然是领导的要求,那我肯定要先答应下来,就算做不到也得过两天再说不是~
接着,我就去后台导了一份6月的订单数据,选取了几个关键字段,如下图:
![数据来源:工作日常](https://img-blog.csdnimg.cn/20191210224331653.png
6月份共有5431单,截至9月15日(领导布置任务时间)退费订单776单,占比14.3%,是比较高的,我们需要进一步分析。

接下来,按照以下思路进行分析:
蘅 芜

提出问题

1、6月退费率为什么这么高?

2、主要都是哪类客户提交的退费?

3、退费和咱们的员工有关系吗?

4、以后要怎样改善,降低退费率?

理解数据

针对此次分析,我选取了学员的uid,姓名,年级,购买课时,购买金额和剩余课时,停课天数、退费金额以及销售的一些信息。
这里对停课天数做一下解释:停课天数是指,学员最后一次上课起至下次上课之间的天数。

数据清洗

根据购买课时和剩余课时创建计算字段消耗课时,运用IF函数求出学员的系统状态:
蘅 芜最终,利用分列将购买时间列格式改为日期格式。

构建模型

1、整体退费率

在这里插入图片描述
从整体退费率中我们看出,6月订单已提交退费的整体退费率14.3%;退费金额13,581,149元,平均退费单笔17,501元。退费率确实比较高。

2、消耗课时分析

在这里插入图片描述

消耗课时来看,退费学员的消耗课时主要集中在1-20课时,占比33.51%,退费金额也是最多的,占所有退费金额的38.61%;将1-20课时的退费单独进行分析,各区间占比均衡。

3、年级课耗段

在这里插入图片描述
在这里插入图片描述
从年级退费率看,退费主要集中在六年级和初中学段;将年级和课耗进行交叉分析发现,退费主要集中在1-20课耗段,与上面分析的结论一致。

4、签约类型退费分析

在这里插入图片描述
776单退费中,共有723单退费的签约类型是新签。新客户还不信任咱们的品牌?看不到效果?还是咱们的服务不到位呢?我们需要结合业务具体进行分析。

评估模型

分析到这一步结束了吗?仔细一想,不对呀,好像没有联系员工呢,看来还交不了差。接着我们将776单退费学员筛出来对他们的销售人员进行分析:

在这里插入图片描述
选取退费提交量大于等于10的销售ID,我的天,一个人就有这么多退费的,看来他们是要接受公司处罚了。(事后我将数据提供给部门进行审核复查,发现确实有部分人为了达成业绩目标,忽悠家长进行骗单,公司也给予了相应的处罚,部分人已跑路,没得办法了。)

还有一个问题,向下看:
在这里插入图片描述
什么情况,都过去俩月了竟然还有65人未开课,这些都是土豪吗,来资助咱们的?需要我们好好查查了。(汇报的时候不要忘记啦)

分析结论及建议

结论:

1、6月订单退费学员主要集中在消耗课时1-20课耗(低课耗)的学生群体,退费学员大多为新签客户;
2、部分销售提交退费数量多,需要重点关注,最好提交数据给质检部门进行审核,复查

建议:

1、公司完善销售签单的处罚措施,针对骗单忽悠的要进行严厉处罚;
2、学习管理师在接到学员后需要及时向销售了解学员情况,时刻关注学员的状态;停课天数15d的要紧跟,多与家长沟通,解决家长疑问,督促学员上课;对停课天数大于30天的学员进行停课激活,多打电话,询问不上课原因;
3、未上课学员需要进一步查看,尽快联系家长询问未开课原因;
4、针对已提交退费的用户,销售、学管以及相应的主管老师要及时进行挽单,询问家长退费原因。

### 关于算法服务退费政策或算法引发的退费解决方案 在讨论算法服务的退费政策以及由算法引发的退费问题时,可以从以下几个方面展开分析: #### 1. **算法公平性与责任归属** 算法可能因设计缺陷、数据偏差或其他原因导致错误决策,从而影响服务质量并触发退费需求。为了保障用户的权益,《AI 公平性:消除算法偏见的技术与政策》一文中提到,应通过技术和政策手段来减少算法偏见的影响[^2]。这意味着,在制定退费政策时,需考虑如何评估算法性能及其潜在的社会影响。 如果由于算法不公平而导致客户损失,则需要明确界定责任方——可能是开发人员、运营团队或者平台本身。这通常涉及法律框架下的合同条款和服务协议说明。 #### 2. **透明度与可解释性的重要性** 对于复杂的算法模型(例如用于化工生产的自适应优化算法),其行为往往难以直观理解。因此,提高算法运行逻辑的透明性和结果的可解释性至关重要[^3]。当用户质疑某个特定输出是否合理时,提供清晰的理由有助于缓解争议,并降低不必要的退款请求频率。 此外,建立一套标准化流程来验证算法的有效性也是必要的措施之一;比如采用交叉验证方法测试不同条件下系统的稳定性表现等策略可以增强信任感。 #### 3. **具体案例处理机制** 针对某些特殊领域内的应用实例,像机器人模仿学习中的动作分块算法 ACT ,虽然目前尚未深入探讨该部分实现细节[^4],但从一般意义上讲,任何新型技术投入实际运用之前都应当经过充分试验论证阶段以确保可靠性达到预期水平后再正式上线推广给大众使用 。 如果确实存在因为新技术引入而造成额外成本增加的情况,则应该提前告知消费者相关风险提示信息以便他们做出明智的选择决定而不是事后被动接受不利后果进而寻求经济赔偿途径解决问题。 综上所述,构建合理的算法服务退费制度不仅依赖于科学严谨的研发过程管理同时也离不开健全完善的法律法规支持体系共同作用才能有效应对可能出现的各种挑战局面。 ```python def refund_policy(algorithm_output, user_expectation): """ A function to determine whether a refund is justified based on algorithm performance. Parameters: algorithm_output (float): The actual output of the algorithm. user_expectation (float): What the customer expected from the service. Returns: bool: True if refund should be granted; False otherwise. """ threshold = calculate_threshold(user_expectation) # Define acceptable deviation range if abs(algorithm_output - user_expectation) > threshold: return True else: return False ``` 上述代码片段展示了一个简单的函数 `refund_policy` 来判断是否给予退款。它基于算法的实际输出和客户的期望之间的差异大小来进行判定。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值