【原创】【百度之星2017资格赛1003】度度熊与邪恶大魔王

度度熊与邪恶大魔王

Accepts: 3107 Submissions: 19305
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Problem Description

度度熊为了拯救可爱的公主,于是与邪恶大魔王战斗起来。

邪恶大魔王的麾下有n个怪兽,每个怪兽有a[i]的生命值,以及b[i]的防御力。

度度熊一共拥有m种攻击方式,第i种攻击方式,需要消耗k[i]的晶石,造成p[i]点伤害。

当然,如果度度熊使用第i个技能打在第j个怪兽上面的话,会使得第j个怪兽的生命值减少p[i]-b[j],当然如果伤害小于防御,那么攻击就不会奏效。

如果怪兽的生命值降为0或以下,那么怪兽就会被消灭。

当然每个技能都可以使用无限次。

请问度度熊最少携带多少晶石,就可以消灭所有的怪兽。

Input

本题包含若干组测试数据。

第一行两个整数n,m,表示有n个怪兽,m种技能。

接下来n行,每行两个整数,a[i],b[i],分别表示怪兽的生命值和防御力。

再接下来m行,每行两个整数k[i]和p[i],分别表示技能的消耗晶石数目和技能的伤害值。

数据范围:

1<=n<=100000

1<=m<=1000

1<=a[i]<=1000

0<=b[i]<=10

0<=k[i]<=100000

0<=p[i]<=1000

Output

对于每组测试数据,输出最小的晶石消耗数量,如果不能击败所有的怪兽,输出-1

Sample Input

1 2
3 5
7 10
6 8
1 2
3 5
10 7
8 6

Sample Output

6
18

分析

一道简单的背包。。。。然而我被数组的大小折腾了一个下午。。。一定要搞清楚变量的意义,特别是各个维度的意义!

因为有同学出过一道剑圣偷小龙的题,所以就直接上思路了。

dp[i][j]表示杀死一个防御力为i,生命值为j的敌人所需的最小费用。
那么肯定是要枚举用哪些技能的。
分三种情况,

  1. 能够秒杀:那么耗蓝就是这个技能的耗蓝;
  2. 破不了防:那还不如干脆不用;
  3. 除此之外:就用或不用,用就是dp[i][j-伤害]+耗蓝

嗯。
写起代码来很亲切,就像写了一个多月的游戏一样亲切(一样多BUG)

上代码。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

void Read(long long &p)
{
    p=0;
    char c=getchar();
    while(c<'0'||c>'9') 
        c=getchar();
    while(c>='0'&&c<='9')
        p=p*10+c-'0',c=getchar();
}

const int MAXN=202017;
const int MAXM=2027;

long long n,m,hp[MAXN],pro[MAXN],mp[MAXM],atk[MAXM];
long long dp[12][MAXM],mxatk=-1,mxpro=-1,mxhp=-1;
int main()
{
    while(cin>>n>>m)
    {
        mxpro=-1,mxatk=-1,mxhp=-1;
        for(int i=1;i<=n;i++)
            Read(hp[i]),Read(pro[i]),
            mxpro=max(mxpro,pro[i]),
            mxhp=max(mxhp,hp[i]);
        for(int i=1;i<=m;i++)
            Read(mp[i]),Read(atk[i]),
            mxatk=max(mxatk,atk[i]);

        if(mxatk<=mxpro)
        {
            puts("-1");
            continue;
        }

        memset(dp,0,sizeof dp);
        for(int i=0;i<=mxpro;i++)
            for(int j=1;j<=mxhp;j++)
            {
                dp[i][j]=0x7ffffff7;
                for(int k=1;k<=m;k++)
                {
                    int sub=atk[k]-i;
                    if(sub>=j) dp[i][j]=min(dp[i][j],mp[k]);
                    else if(sub>0) dp[i][j]=min(dp[i][j],dp[i][j-sub]+mp[k]);
                }
            }
        long long ans=0;
        for(int i=1;i<=n;i++)
            ans+=dp[pro[i]][hp[i]];
        cout<<ans<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值