UVa 10570 Meeting with Aliens

Problem D
Meeting with Aliens
Input: 
Standard Input

Output: Standard Output

Time Limit: 3 Seconds

 

The aliens are in an important meeting just before landing on the earth. All the aliens sit around a round table during the meeting. Aliens are numbered sequentially from 1 to N. It's a precondition of the meeting that i'th alien will sit between (i-1)'th and (i+1)'th alien. 1st alien will sit between 2nd and N'th alien.

Though the ordering of aliens are fixed but their positions are not fixed. In the above figure two valid sitting arrangements of eight aliens are shown. Right before the start of the meeting the aliens sometimes face a common problem of not maintaining the proper order. This occurs as no alien has a fixed position. Two maintain the proper order, two aliens can exchange their positions. The aliens want to know the minimum number of exchange operations necessary to fix the order.

Input

Input will start with a positive integer, N (3<=N<=500) the number of aliens. In next few lines there will be N distinct integers from 1 toN indicating the current ordering of aliens. Input is terminated by a case where N=0. This case should not be processed. There will be not more than 100 datasets.

 

Output

For each set of input print the minimum exchange operations required to fix the ordering of aliens.

Sample Input                                   Output for Sample Input

4
1 2 3 4
4
4 3 2 1
4
2 3 1 4
0
 
0
0
1
 

 

#include <cstdio>
#include <algorithm>
using namespace std;

// array[i]代表i位置的整数
int array[510];

// place[i]代表整数i的下标
int place[510];
int n;

int tmp_place[510];
int tmp_array[510];

int main()
{
	while(scanf("%d", &n) == 1 && n != 0)
	{
		// 读入整数
		for(int i = 0; i < n; i++)
		{
			scanf("%d", &array[i]);
			place[array[i]] = i;
		}

		int min_count = n+10;
		// 枚举所有可能的排列情况	
		for(int x = 1; x <= n; x++)
		{
			// 枚举升序的情况
			// x,x+1,...,n,1,...,x-1
			int count1 = 0;
			for(int i = 1; i <= n; i++)
				tmp_place[i] = place[i];
			for(int i = 0; i < n; i++)
				tmp_array[i] = array[i];
			int num = x;
			for(int i = 0; i < n; i++)
			{
				if(tmp_array[i] != num)
				{
					tmp_array[tmp_place[num]] = tmp_array[i];
					tmp_place[tmp_array[i]] = tmp_place[num];
					tmp_place[num] = i;
					tmp_array[i] = num;
					count1++;	
				}
				num++;
				if(num > n)
					num = 1;
			}
			if(min_count > count1)
				min_count = count1;

			// 枚举降序的情况
                        // x,x-1,...,1,n,...,x+1
			count1 = 0;
			for(int i = 1; i <= n; i++)
                                tmp_place[i] = place[i];
                        for(int i = 0; i < n; i++)
                                tmp_array[i] = array[i];
                        num = x;
                        for(int i = 0; i < n; i++)
                        {
                                if(tmp_array[i] != num)
                                {
                                        tmp_array[tmp_place[num]] = tmp_array[i];
                                        tmp_place[tmp_array[i]] = tmp_place[num];
                                        tmp_place[num] = i;
                                        tmp_array[i] = num;
                                        count1++;
                                }
                                num--;
                                if(num < 1)
                                        num = n;
                        }
                        if(min_count > count1)
                                min_count = count1;
				
/*
			int next_p = tmp_place[x]+1;
			int next_n = x+1;
			if(next_p >= n)
				next_p = 0;
			if(next_n > n)
				next_n = 1;	
			while(next_p != tmp_place[x])
			{
				if(tmp_place[next_n] != next_p)
				{
					int t = tmp_place[next_n];
					tmp_place[next_n] = next_p;
					tmp_place[tmp_array[next_p]] = t;
					tmp_array[t] = tmp_array[next_p];
					tmp_array[next_p] = next_n;
					count1++;
				}	
				next_p++;
				next_n++;
				if(next_p >= n)
					next_p = 0;
				if(next_n > n)
					next_n = 1;
 
			}
			if(min_count > count1)
				min_count = count1;

			// 枚举降序的情况
                        // x,x-1,...,1,n,...,x+1
			count1 = 0;
			for(int i = 1; i <= n; i++)
                                tmp_place[i] = place[i];
                        for(int i = 0; i < n; i++)
                                tmp_array[i] = array[i];
                        next_p = tmp_place[x]+1;
                        next_n = x-1;
                        if(next_p >= n)
                                next_p = 0;
                        if(next_n < 1)
                                next_n = n;
		
			while(next_p != tmp_place[x])
                        {
                                if(tmp_place[next_n] != next_p)
                                {
                                        int t = tmp_place[next_n];
                                        tmp_place[next_n] = next_p;
                                        tmp_place[tmp_array[next_p]] = t;
                                        tmp_array[t] = tmp_array[next_p];
                                        tmp_array[next_p] = next_n;
                                        count1++;
                                }
                                next_p++;
                                next_n--;
                                if(next_p >= n)
                                        next_p = 0;
                                if(next_n < 1)
                                        next_n = n;

                        }
                        if(min_count > count1)
                                min_count = count1;		
*/
		}	
		printf("%d\n", min_count);	
	}	
	return 0;
}


这道题没想出来,一开始讨论以1开头的升序和降序情况,结果WA.

后来看了别人的思路,就是枚举所有可能出现的情况。然后计算交换次数。

交换次数的计算:将a1,a2,...,an变换至b1,b2,...,bn的方法是如果a1不为b1,将b1移到该位置,然后再看a2,依次类推。

交换次数为最少的原因是:如果ai不为bi, 那么至少需要一次交换将bi移到该位置。设bi原来所在的位置为bj. 如果ai为bj. 那么不需移动,如果ai不为bj, 那么需要移动bj一次。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值