Conv层和BN层合并

在深度学习中,Conv + BN + Relu已成为标配,
那么在网络推理阶段,我们其实可以将Conv层和BN层进行合并,因为他们都是线性运算。
合并后就相当于少了BN层的计算,这样可以加快网络推理。

在数学计算上讲,合并的本质其实就是改变了卷积层的权重和偏置。

卷积层计算

在这里插入图片描述

BN层计算

在这里插入图片描述
其中
在这里插入图片描述将BN层合并于Conv层后,Conv的计算方式如下:

在这里插入图片描述
即:
在这里插入图片描述
那么,我们令:
在这里插入图片描述
则:
在这里插入图片描述

可以看到,BN层合并于卷积层后,本质是卷积层的权重偏值发生了改变,但是却少了一个BN层的计算,这对于加速推理是十分有益的。

  • 2
    点赞
  • 16
    收藏 更改收藏夹
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦坠凡尘

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值