CF 808F - Card Game 二分图最大点权独立集 网络流

题意:

给你一些卡片,每个卡片有价值,魔法值,等级。

现在要你组成一个卡组,使得卡组里面任意两个数魔法值相加不是质数,并且价值之和大于k。

问你需要达到的最低等级,你可以使用等级小于等于你自己等级的卡片。

题解:

如果我们将加起来为素数的任意两个数连边,那么我们就是要求一个独立集,使得点权之和大于k。

而且我们发现,两数相加为质数,一定是一个奇数,一个偶数(除了两个1相加)的二分图。

1的问题怎么解决? 由于只能选择最多一个1,所以我们保留权值最大的那个1,然后再跑二分图最大点权独立集即可。

二分一下答案。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <bitset>
#include <map>
#include <vector>
#include <stack>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <cmath>
#include <ctime>
#ifdef LOCAL
#define debug(x) cout<<#x<<" = "<<(x)<<endl;
#else
#define debug(x) 1;
#endif

#define chmax(x,y) x=max(x,y)
#define chmin(x,y) x=min(x,y)
#define lson id<<1,l,mid
#define rson id<<1|1,mid+1,r
#define lowbit(x) x&-x
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, int> pii;

const int MOD = 1e9 + 7;
const double PI = acos (-1.);
const double eps = 1e-10;
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3f;
const int MAXN = 2e5 + 5;

int p[MAXN], c[MAXN], l[MAXN];

const int inf = 0x3f3f3f3f;
const int MX = 205;
const int MXE = 4 * MX * MX;
struct MaxFlow {
    struct Edge {
        int v, w, nxt;
    } edge[MXE];
    int tot, num, s, t;
    int head[MX];
    void init() {
        memset (head, -1, sizeof (head) );
        tot = 0;
    }
    void add (int u, int v, int w) {
        edge[tot].v = v;
        edge[tot].w = w;
        edge[tot].nxt = head[u];
        head[u] = tot++;

        edge[tot].v = u;
        edge[tot].w = 0;
        edge[tot].nxt = head[v];
        head[v] = tot++;
    }

    int  d[MX], vis[MX], gap[MX];
    void bfs() {
        memset (d, 0, sizeof (d) );
        memset (gap, 0, sizeof (gap) );
        memset (vis, 0, sizeof (vis) );
        queue<int>q;
        q.push (t);
        vis[t] = 1;
        while (!q.empty() ) {
            int u = q.front();
            q.pop();
            for (int i = head[u]; ~i; i = edge[i].nxt) {
                int v = edge[i].v;
                if (!vis[v]) {
                    d[v] = d[u] + 1;
                    gap[d[v]]++;
                    q.push (v);
                    vis[v] = 1;
                }
            }
        }
    }

    int last[MX];
    int dfs (int u, int f) {
        if (u == t) return f;
        int sap = 0;
        for (int i = last[u]; ~i; i = edge[i].nxt) {
            int v = edge[i].v;
            if (edge[i].w > 0 && d[u] == d[v] + 1) {
                last[u] = i;
                int tmp = dfs (v, min (f - sap, edge[i].w) );
                edge[i].w -= tmp;
                edge[i ^ 1].w += tmp;
                sap += tmp;
                if (sap == f) return sap;
            }
        }
        if (d[s] >= num) return sap;
        if (! (--gap[d[u]]) ) d[s] = num;
        ++gap[++d[u]];
        last[u] = head[u];
        return sap;
    }

    int solve (int st, int ed, int n) {
        int flow = 0;
        num = n;
        s = st;
        t = ed;
        bfs();
        memcpy (last, head, sizeof (head) );
        while (d[s] < num) flow += dfs (s, inf);
        return flow;
    }
} F;

int n, k;
int st, en;
int is_prime[MAXN];


void init() {
    memset(is_prime, -1, sizeof(is_prime));
    for (int i = 2; i < MAXN; i++)
        if(is_prime[i]) for (int j = i + i; j < MAXN; j += i) is_prime[j] = 0;
}

bool check (int x) {
    F.init();
    st = 0, en = n + 1;
    int ind = 0, maxval = 0;
    int tot = 0;
    for (int i = 1; i <= n; i++) {
        if (l[i] > x) continue;
        if (c[i] == 1) {
            ind = i;
            maxval = max (maxval, p[i]);
            continue;
        }
        tot += p[i];
        if (c[i] & 1) F.add (st, i, p[i]);
        else F.add (i, en, p[i]);
    }
    tot += maxval;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j < i; j++) {
            if(is_prime[c[i] + c[j]]) {
                if (c[i] & 1) F.add(i, j, INF);
                else F.add(j, i, INF);
            }
        }
    }
    if (ind) F.add (st, ind, maxval);
    return tot - F.solve (st, en, n + 2) >= k;
}


int main() {
#ifdef LOCAL
    freopen ("input.txt", "r", stdin);
#endif
    scanf ("%d %d", &n, &k);
    for (int i = 1; i <= n; i++) scanf ("%d %d %d", &p[i], &c[i], &l[i]);
    F.init();
    init();
    int l = 1, r = n;
    while (l <= r) {
        int mid = (l + r) >> 1;
        if (check (mid) ) r = mid - 1;
        else l = mid + 1;
    }
    printf ("%d\n", r == n ? -1 : r + 1);

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值