题意:n张卡片,第i张卡片价值p[i],序号为c[i],等级为l[i],初始等级为1,不能选等级比自己大的物品.
现在从n张卡片中选出一个子集,要求其价值和不低于k,并且任意两个序号和不是素数.问最少要升到多少级.
n<=100,k<=1e5,p[i]<=1000,c[i]<=1e5,1<=l[i]<=n.
首先1<=l[i]<=n<=100.可以二分要升到的等级.
因为若c[a]+c[b]为prime,则(a,b)这两个不能同时选,选a就不能选b,选b就不能选a.有点独立集的感觉.
若c[a]为奇数,则源点向a连容量为p[a]的边.
对c[a]+c[b]为prime的点连接一条边 容量为inf (该边不可能在最小割上,(s,a),(b,t)至少有一条被选中)
若c[b]为偶数,则b向汇点连容量为p[b]的边.
则此时显然要求的就是该图的最大点权独立集 = 总权值-最小点权覆盖值(最小割).
#include<bits/stdc++.h>
using namespace std;
const int MAXN=300;
const int INF=0x3f3f3f3f;
struct edge{
int from,to,cap,flow;
};
struct Dinic{
int n,m,s,t;
int vis[MAXN];
int d[MAXN];
int cur[MAXN];
vector<int> G[MAXN];
vector<edge> edges;
void init(int n){
this->n=n;
for(int i=0;i<n;++i)G[i].clear();
edges.clear();
}
void adde(int from,int to,int cap){
edges.push_back(edge{from,to,cap,0});
edges.push_back(edge{to,from,0,0});
int m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS(){
memset(vis,0,sizeof(vis));
vis[s]=1;
d[s]=0;
queue<int> q;
q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=0;i<G[x].size();++i){
edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
d[e.to]=d[x]+1;
vis[e.to]=1;
q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){
if(x==t||a==0)return a;
int flow=0,f;
for(int &i=cur[x];i<G[x].size();++i){
edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s,this->t=t;
int flow=0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow+=DFS(s,INF);
}
return flow;
}
}g;
const int MAXM=200010;
int n,k,p1,p2,pp1,pp2,vis[MAXM];
struct node{
int p,c,l;
void read(){
scanf("%d%d%d",&p,&c,&l);
}
bool operator<(const node& r)const{
return p>r.p;
}
}odd[MAXN],even[MAXN],L[MAXN],R[MAXN];
vector<node> one;
void get_table(){
int m=sqrt(MAXM+0.5);
for(int i=2;i<=m;++i)if(!vis[i])
for(int j=i*i;j<MAXM;j+=i)vis[j]=1;
}
bool check(int mid){
int sum=0;
pp1=pp2=0;
for(int i=0;i<p1;++i)if(odd[i].l<=mid){
sum+=odd[i].p;
L[pp1++]=odd[i];
}
for(int i=0;i<p2;++i)if(even[i].l<=mid){
sum+=even[i].p;
R[pp2++]=even[i];
}
for(int i=0;i<one.size();++i)if(one[i].l<=mid){
L[pp1++]=one[i];
sum+=one[i].p;
break;
}
int s=pp1+pp2,t=s+1;
g.init(t+1);
for(int i=0;i<pp1;++i)g.adde(s,i,L[i].p);
for(int i=0;i<pp2;++i)g.adde(i+pp1,t,R[i].p);
for(int i=0;i<pp1;++i)
for(int j=0;j<pp2;++j){
int v=L[i].c+R[j].c;
if(!vis[v])g.adde(i,j+pp1,INF);
}
int ans=sum-g.Maxflow(s,t);
return ans>=k;
}
int main(){
get_table();
scanf("%d%d",&n,&k);
node t;
p1=p2=pp1=pp2=0;
int L=0,R=0;
for(int i=0;i<n;++i)
{
t.read();
R=max(R,t.l);
if(t.c!=1&&(t.c&1))odd[p1++]=t;
else if(t.c==1)one.push_back(t);
else even[p2++]=t;
}
sort(one.begin(),one.end());
if(!check(R))printf("-1\n");
else{
while(L<R){
int mid=(L+R)>>1;
if(check(mid))R=mid;
else L=mid+1;
}
printf("%d\n",L);
}
return 0;
}