10、基于ECG和PPG信号的无袖带血压估计的数据驱动模型

基于ECG和PPG的无袖带血压估计

基于ECG和PPG信号的无袖带血压估计的数据驱动模型

1 特征提取与分析

1.1 特定特征介绍

  • 大动脉僵硬度指数(LASI) :LASI是动脉僵硬度的一个指标,它与收缩期峰值和曲率为零的点(第一个拐点)之间的时间间隔成反比。
  • 拐点面积(IPA) :IPA定义为PPG曲线在选定的点(标记为S1、S2、S3和S4)之间的面积,它提供了关于全身总阻力的信息。这些点是PPG二阶导数(SDPPG)为零的拐点。

1.2 回归方法

将提取的43个特征输入到各种机器学习(ML)模型中,以分析特征与血压(BP)之间的可能关系。针对收缩压(SBP)、舒张压(DBP)和平均血压(MBP)分别训练不同的模型,考虑的回归方法包括线性回归、岭回归、支持向量回归、Adaboost回归和随机森林(RF)回归。

1.3 特征选择

将所有43个手工特征输入到RF模型中,其平均绝对误差(MAE)优于其他回归方法。但可能存在对模型准确性贡献不大的无关特征,因此使用二进制遗传算法(GA)来识别这些特征,以降低计算成本。GA返回种群中最适合的个体,与产生最小MAE的ML算法结合,分别为SBP、DBP和MBP获得特征子集。

GA的具体操作如下:
1. 初始时随机生成种群,并在每次迭代时更新。
2. 染色体长度为43,由0和1组成,分别表示特征的缺失和存在。
3. 单点交叉和变异的概率分别为1和0.25。
4. 使用Nvidia V - 100工作站(配备Quadro G

【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析(Python代码实现)内容概要:本文围绕“并_离网风光互补制氢合成氨系统容量-调度优化分析”的主题,提供了基于Python代码实现的技术研究与复现方法。通过构建风能、太阳能互补的可再生能源系统模型,结合电解水制氢与合成氨工艺流程,对系统的容量配置与运行调度进行联合优化分析。利用优化算法求解系统在不同运行模式下的最优容量配比调度策略,兼顾经济性、能效性稳定性,适用于并网与离网两种场景。文中强调通过代码实践完成系统建模、约束设定、目标函数设计及求解过程,帮助读者掌握综合能源系统优化的核心方法。; 适合人群:具备一定Python编程基础能源系统背景的研究生、科研人员及工程技术人员,尤其适合从事可再生能源、氢能、综合能源系统优化等相关领域的从业者;; 使用场景及目标:①用于教学与科研中对风光制氢合成氨系统的建模与优化训练;②支撑实际项目中对多能互补系统容量规划与调度策略的设计与验证;③帮助理解优化算法在能源系统中的应用逻辑与实现路径;; 阅读建议:建议读者结合文中提供的Python代码进行逐模块调试与运行,配合文档说明深入理解模型构建细节,重点关注目标函数设计、约束条件设置及求解器调用方式,同时可对比Matlab版本实现以拓宽工具应用视野。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值