基于ECG和PPG信号的无袖带血压估计的数据驱动模型
1 特征提取与分析
1.1 特定特征介绍
- 大动脉僵硬度指数(LASI) :LASI是动脉僵硬度的一个指标,它与收缩期峰值和曲率为零的点(第一个拐点)之间的时间间隔成反比。
- 拐点面积(IPA) :IPA定义为PPG曲线在选定的点(标记为S1、S2、S3和S4)之间的面积,它提供了关于全身总阻力的信息。这些点是PPG二阶导数(SDPPG)为零的拐点。
1.2 回归方法
将提取的43个特征输入到各种机器学习(ML)模型中,以分析特征与血压(BP)之间的可能关系。针对收缩压(SBP)、舒张压(DBP)和平均血压(MBP)分别训练不同的模型,考虑的回归方法包括线性回归、岭回归、支持向量回归、Adaboost回归和随机森林(RF)回归。
1.3 特征选择
将所有43个手工特征输入到RF模型中,其平均绝对误差(MAE)优于其他回归方法。但可能存在对模型准确性贡献不大的无关特征,因此使用二进制遗传算法(GA)来识别这些特征,以降低计算成本。GA返回种群中最适合的个体,与产生最小MAE的ML算法结合,分别为SBP、DBP和MBP获得特征子集。
GA的具体操作如下:
1. 初始时随机生成种群,并在每次迭代时更新。
2. 染色体长度为43,由0和1组成,分别表示特征的缺失和存在。
3. 单点交叉和变异的概率分别为1和0.25。
4. 使用Nvidia V - 100工作站(配备Quadro G
基于ECG和PPG的无袖带血压估计
超级会员免费看
订阅专栏 解锁全文
49

被折叠的 条评论
为什么被折叠?



