- 博客(17)
- 收藏
- 关注
原创 「ECG信号处理——(17)基于小波熵阈值的R峰检测(与时域-频域-多尺度小波法对比)」2025年6月12日
心电图(ECG)信号特征检测旨在准确识别心电图中的关键波形(如P波、QRS波群、T波)及其特征点(如R波峰值)。然而,ECG信号易受噪声干扰(如肌电干扰、基线漂移、工频干扰),且个体差异导致特征形态变化,增加了检测难度。传统方法在复杂噪声环境下检测精度有限,而基于小波熵阈值的方法结合小波变换多分辨率分析与信息熵理论,能更好平衡噪声抑制与特征保留。因此,本文档介绍一种基于小波熵阈值的ECG特征检测方法。
2025-06-12 17:32:57
855
原创 「ECG信号处理——(16)多模态融合(ECG+PPG联合变异性分析)」2025年6月10日
心电信号(ECG)和光电容积脉搏波(PPG)是两种重要的生理信号,它们分别反映了心脏的电活动和外周血管的容积变化。近年来,多模态融合技术在生理信号分析领域取得了显著进展,通过联合分析ECG和PPG信号,可以获得更全面的心血管系统信息。本文将深入探讨基于ECG和PPG的联合变异性分析方法,包括信号预处理、特征提取以及多模态融合分析技术。
2025-06-10 13:10:44
667
原创 「ECG信号处理——(15)基于连续小波变换(CWT)和卷积神经网络(CNN)的心律失常分类算法」2025年6月6日
本文档提出了一种结合小波变换和 CNN 的心律失常分类方法,旨在充分发挥小波变换在信号时频分析方面的优势以及 CNN 在处理二维图像数据方面的强大能力,实现对心律失常信号的高效、准确分类。
2025-06-06 11:58:50
916
原创 「ECG信号处理——(14)EMD/EEMD/VMD 信号分解方法」2025年5月23日
上一节,我们介绍了希尔伯特黄变换(HHT)及其经验模态分解(EMD)的相关内容,这一节,我们继续拓展EMD分解技术,补充介绍集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和变分模态分解(Variational Mode Decomposition,VMD)分解方法。
2025-05-23 17:21:07
733
原创 「ECG信号处理——(13)希尔伯特黄变换(HHT)」2025年5月19日
心电信号(ECG)是反映心脏电活动的重要生理信号,其特征提取对于心脏疾病的诊断和监测具有关键意义。Hilbert - Huang Transform(HHT)作为一种强大的信号处理工具,在心电信号特征提取领域得到了广泛应用。本文将深入解析HHT在心电信号特征提取中的应用原理、优势以及实际操作步骤,帮助读者更好地理解和应用这一技术。
2025-05-19 17:54:41
979
原创 「ECG信号处理——(12)心率变异性分析」2025年4月1日
心率变异性(Heart Rate Variability,HRV)是指逐次心跳周期差异的变化情况,它反映了心脏自主神经调节功能的动态变化。HRV分析在临床诊断、运动医学、心理生理学等领域具有重要的应用价值。本文将详细介绍心率变异性分析的流程,包括时间域分析、非线性分析、RR间期直方图分析以及频域分析,并结合正常参数范围和数据分析健康情况。
2025-04-01 14:16:00
1326
原创 「ECG信号处理——(11)心电信号中基线漂移、肌电干扰与工频干扰联合滤除」2025年3月31日
本文整合上述内容,对心电信号中基线漂移、肌电干扰和工频干扰进行联合滤波去噪。
2025-03-31 11:20:24
993
原创 「ECG信号处理——(10)Pan-Tompkins算法(R波定位与检测)」2025年3月17日
在心电信号(ECG)处理中,R波的检测是一个关键步骤,因为它直接影响到心率计算和心律失常的检测。Pan-Tomkins算法是一种经典的实时QRS波检测算法,广泛应用于ECG信号处理中。本文将详细介绍Pan-Tomkins算法的原理及其实现过程。
2025-03-17 15:16:48
1677
原创 「ECG信号处理——(9)工频干扰去噪与实现方法(陷波/带阻滤波器)」2025年3月4日
在ECG(心电图)信号处理中,常常会遇到工频干扰(50Hz或60Hz)的影响,这种干扰通常来源于电力系统的电磁辐射,特别是电力线或设备中产生的电磁波。本文介绍了如何使用陷波滤波器去除50Hz工频干扰,并对去噪效果进行了SNR(信噪比)和MSE(均方误差)评估。
2025-03-04 15:09:51
2151
原创 「ECG信号处理——(8)肌电干扰去噪与实现方法(带通滤波器)」2025年2月12日
肌电干扰(EMG interference)通常是由肌肉的收缩或放松引起的。当肌肉纤维收缩时,会产生动作电位,这些电位会传播并产生电场,被电极检测到,形成肌电信号。然而,这些信号也可能被其他设备或电极误检测到,从而在非目标信号中产生干扰。
2025-02-12 11:17:18
1108
2
原创 「ECG信号处理——(7)小波变换(WT)」2025年1月20日
小波变换是一种用于信号分析的数学工具,它能够将信号分解为不同尺度上的逼近和细节信息。小波分解与重构是小波变换的核心应用,广泛用于信号去噪、压缩等领域。本节,我们将基于小波变换原理,探讨如何去除心电信号中的基线漂移并进行去噪处理。
2025-01-20 11:22:08
1496
原创 「ECG信号处理——(6)基线漂移去噪与实现方法(高通滤波器)」2025年1月7日
基线漂移是指心电信号的一个重要特征,频率范围低,一般在0.05Hz至几Hz。其是在心电信号从导联输入到接收端的过程中,由于各种原因引起的心电信号在传输过程中发生的变化,使得心电波形失真,最终导致心电波形失真,这一变化就称为基线漂移,
2025-01-07 18:32:26
1896
5
原创 「ECG信号处理——(5)心电信号中的常见噪声」2024年12月10日
心电信号(ECG)是心脏电生理活动在体表的电位变化的记录,它能够提供关于心脏节律和功能的重要信息。尽管心电信号携带了丰富的心脏活动信息,但其幅度相对较低,因此在采集、传输和模拟至数字信号转换过程中,极易受到各种外部和内部噪声的干扰。
2024-12-10 18:39:57
2627
3
原创 「ECG信号处理——(4)心电信号的形成机制与诊断基础」2024年11月22日
心电图(Electrocardiogram,简称ECG或EKG)是一种记录心脏电活动的医学测试。它通过在身体表面放置一系列电极捕捉并记录心脏每次跳动时产生的微小电脉冲。这些电脉冲反映了心脏的电生理过程,包括心房和心室的去极化(除极)和复极化(复极)。心电图的波形可以提供关于心脏节律、心率、心脏各部分功能状态以及可能存在的心脏疾病的重要信息。
2024-11-22 16:56:13
3287
2
原创 「ECG信号处理——(3)WFDB工具包与MIT-BIH数据库读取」2024年11月13日
「ECG信号处理-第三课——WFDB工具包与MIT-BIH数据库读取」2024年11月13日。本篇将介绍如何利用WFDB工具包,进行MIT-BIH数据库读取。实测有效~
2024-11-13 17:06:34
1862
2
原创 「ECG信号处理——(2)MIT-BIH数据库在线分析(ATM)」2024年11月4日
在上一篇文章中,我们介绍了MIT-BIH数据库简介、数据库链接和数据库的组成结构。祥见「ECG信号处理-第一课——认识MIT-BIH数据库」2024年10月25日-CSDN博客。本篇将介绍如何在线显示并且读取MIT-BIH数据的具体内容。可以访问如下网址:PhysioBankATM可选择数据库名称、记录号(100号)和信号导联(MLII是矫正肢体导联II,V5是胸前导联V5)。选择MIT-BIHArrhythmiaDatabase(mitdb)数据库。可自由调整选择数
2024-11-04 19:25:26
1613
原创 「ECG信号处理——(1)认识MIT-BIH数据库」2024年10月25日
MIT-BIH心电数据库(MIT-BIHArrhythmiaDatabase),由美国麻省理工学院(MIT)和贝斯以色列医院(BethIsraelHospital)联合建立。数据库包含了48个半小时常驻ECG记录,来自47名受试者,记录了各种心律失常现象。这些数据已被广泛用于心律分析研究和心律失常检测器的评估。MIT-BIH数据库的采样频率为360Hz,分辨率为11位,每个记录持续时间超过30分钟,采用Format212格式存储。此外,该数据库还提供了人工标注的心拍位置和类型信息,方便研究者使用。
2024-10-24 19:44:35
4632
7
心电信号基线漂移去噪与实现方法
2025-05-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人