提高方面级情感分析的性能:一种结合词汇图和句法图的方法

本文介绍BiGCN,一种用于方面级情感分析的模型,结合层次句法图和词汇图以利用单词共现信息和句法关系。BiGCN在多个基准数据集上表现出最佳性能,通过实验验证了概念层次和词汇图的有效性。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者|张咪

学校|武汉大学硕士生

研究方向|情感分析、信息抽取等

本文介绍一篇发表于 EMNLP 2020 的论文《Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis》,简称 BiGCN。该工作提出了一种新颖的体系结构,其目标在于更好地利用语料库级别的单词共现信息以及不同类型的句法依存关系。

为此,该文首先创造性地提出了句法和词汇的概念层次,并以此为基础建立了层次句法图和层次词汇图,随后设计了双层交互式图卷积网络以充分融合层次句法和词汇图。论文在五个基准数据集上进行了大量实验,结果表明 BiGCN 方法达到了最佳性能。

 

论文标题:

Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis

论文链接:

https://www.aclweb.org/anthology/2020.emnlp-main.286.pdf

代码链接:

https://github.com/NLPWM-WHU/BiGCN



背景简介

ASC (Aspect-based Sentiment Classification):目的在于确定针对特定方面的情感极性。例如:great food but the service was dreadful.

给定两个方面词的术语“food”和“service”,目标是推断方面的情感极性:对 food 是 positive,对 service 是 negative。

1.1 Existing Studies

ASC 的最新进展集中在开发各种类型的深度学习模型上。我们简要回顾了不考虑语法的神经模型,然后转到基于语法的模型。

 

1.1.1 Neural models without considering syntax

不考虑语法模型的神经模型主要可以分为几种类型:基于 LSTM,基于 CNN,基于 memory 和其他混合方法。

缺点:这些模型将句子表示为一个单词序列,而忽略了单词之间的句法关系,因此,此类方法很难找到远离 aspect 的意见单词。

 

1.1.2 Neural models considering syntax

句法信息可以使依赖性信息保留在冗长的句子中,并有助于缩短方面词和观点词之间的距离。最近的一些研究(Zhang 等人,2019;Huang 和 Carley,2019; Sun 等人,2019)利用基于图的模型来集成句子的句法结构,并且表现出更好的性能。

缺点:尽管上述方法取得了一定的效果,但其忽略语料库级别的单词共现信息。对语法依赖的不同类型也没有加以区分


问题与动机

2.1 Task Definition

给定由n个单词和从第(a + 1)个位置开始、长度为m的方面组成的句子 ,ASC 任务的目标是识别句子中给定方面的情感极性,包含正面,中性和负面三种极性。

2.2 Motivations

2.1.1 频繁出现的词对代表着语言学中的固定搭配。

例如,在句子“food was okay, nothing special”中,单词“nothing special”对在 SemEval 训练集中出现了 5 次,表示负极性。如果没有这样的全局信息来抵消“okay”的正面影响,基于语法的方法将对“food”做出错误的预测。

 

2.1.2 每种类型的句法依存关系都表示一种特定的关系

例如,在“i like hamburgers”中,“i like”是 nsubj(名词主语)关系,而“like hamburgers”是 dobj(直接宾语)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值