一文详解Wassertein距离

本文深入探讨了Wassertein距离,从Monge问题和Kantorovich问题出发,解释了最优传输映射和传输方案的概念。Wasserstein距离在深度学习中用于衡量概率分布的差异,其连续性特性使其在统计散度中具有优势。文章通过实例解释了1-Wasserstein距离,并介绍了其在Wasserstein GANs中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©PaperWeekly 原创 · 作者|孙裕道

学校|北京邮电大学博士生

研究方向|GAN图像生成、情绪对抗样本生成

引言

WGAN 的横空出世引出了一个更好度量两个概率分布差异的指标即 Wassertein 距离(或叫做推土机距离),它主要优势就在于该距离具有连续性的特质。TV 散度和 JS 散度的缺点在于这两个距离不具有连续性,这会导致在神经网络参数优化的过程中梯度会消失,KL 散度则是因为该距离不具有对称性即 。

本文会从 Monge 问题开始详细介绍关于 Wassertein 距离的一些相关背景和证明,最后给出了一个实例有助于理解 Wassertein 距离这个概念。

Monge问题(最优传输映射)

一般情况下,假定   和   是完备、可分的度量空间,例如欧式空间的子集  ,通常是紧集。  代表   上所有概率测度构成的空间。

问题1(Monge 问题或最优传输问题)给定两个概率测度   和一个代价函数  ,求:

其中由映射   诱导的推前测度   定义为:

这里   是任意可测集合,映射空间:

如下图示,Monge 问题其实是在找一个最优传输映射  ,映射   将空间   映射为空间   是空间   中的区域,  是   在   中原像。需要满足的条件是对于   空间中区域   的测度要与   空间中区域   的测度要相等。根据下图通俗易懂的理解是面积 

### 数据治理框架的概念 数据治理框架是一套结构化的方法论,用于指导企业在管理和利用数据资产的过程中如何有效地进行决策和支持操作。该框架不仅涵盖了技术和工具的选择,还包括政策制定、标准设定以及流程设计等方面的内容[^3]。 ### 数据治理框架的主要构成要素 #### 1. 利益干系人的定义与角色分配 在DGI数据治理框架中,明确了三个主要的利益干系人群体:数据利益相关者、数据治理办公室和数据专员。这些群体共同构成了数据治理的核心团队,在整个过程中扮演着不同的角色并承担相应的责任[^1]。 - **数据利益相关者**:通常指那些对企业内部或外部使用的各类数据有直接影响的人士,他们可能来自业务部门或是信息技术领域。 - **数据治理办公室**:作为协调中心负责监督整体策略执行情况,并确保各个层面遵循既定方针;同时还要处理日常运营事务如培训教育等。 - **数据专员**:具体落实各项措施的技术人员,专注于特定项目或任务上的细节工作。 #### 2. 职责分工说明 对于上述提到的不同参与者之间的协作方式及各自的任务边界进行了详细的阐述。这有助于避免重复劳动的同时也能够提高工作效率,使得每一个人都清楚自己在整个体系内的位置及其所肩负的责任所在。 #### 3. 知识领域的划分 依据DAMA-DMBOK框架,数据管理被细分为多个相互关联却又独立存在的知识域。这种分类方法可以帮助组织更好地理解复杂的信息生态系统,并针对不同方面采取针对性更强的解决方案。例如,“元数据管理”、“文档记录”、“安全保护”等领域都属于这一范畴内的重要组成部分[^2]。 ```python # Python代码示例展示了一个简单的类来表示数据治理框架中的角色 class DataGovernanceRole: def __init__(self, name, responsibilities): self.name = name self.responsibilities = responsibilities def describe_role(self): print(f"The role of {self.name} includes:") for responsibility in self.responsibilities: print(f"- {responsibility}") data_stakeholder = DataGovernanceRole( "Data Stakeholders", ["Influencing data usage within or outside the organization"] ) governance_office = DataGovernanceRole( "Data Governance Office", [ "Overseeing strategy implementation", "Ensuring compliance with policies" ] ) data_specialist = DataGovernanceRole( "Data Specialists", ["Implementing specific measures on projects"] ) data_stakeholder.describe_role() governance_office.describe_role() data_specialist.describe_role() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值