一文详解Wassertein距离

本文深入探讨了Wassertein距离,从Monge问题和Kantorovich问题出发,解释了最优传输映射和传输方案的概念。Wasserstein距离在深度学习中用于衡量概率分布的差异,其连续性特性使其在统计散度中具有优势。文章通过实例解释了1-Wasserstein距离,并介绍了其在Wasserstein GANs中的应用。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者|孙裕道

学校|北京邮电大学博士生

研究方向|GAN图像生成、情绪对抗样本生成

引言

WGAN 的横空出世引出了一个更好度量两个概率分布差异的指标即 Wassertein 距离(或叫做推土机距离),它主要优势就在于该距离具有连续性的特质。TV 散度和 JS 散度的缺点在于这两个距离不具有连续性,这会导致在神经网络参数优化的过程中梯度会消失,KL 散度则是因为该距离不具有对称性即 。

本文会从 Monge 问题开始详细介绍关于 Wassertein 距离的一些相关背景和证明,最后给出了一个实例有助于理解 Wassertein 距离这个概念。

Monge问题(最优传输映射)

一般情况下,假定   和   是完备、可分的度量空间,例如欧式空间的子集  ,通常是紧集。  代表   上所有概率测度构成的空间。

问题1(Monge 问题或最优传输问题)给定两个概率测度   和一个代价函数  ,求:

其中由映射   诱导的推前测度   定义为:

这里   是任意可测集合,映射空间:

如下图示,Monge 问题其实是在找一个最优传输映射  ,映射   将空间   映射为空间   是空间   中的区域,  是   在   中原像。需要满足的条件是对于   空间中区域   的测度要与   空间中区域   的测度要相等。根据下图通俗易懂的理解是面积 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值