©PaperWeekly 原创 · 作者|孙裕道
学校|北京邮电大学博士生
研究方向|GAN图像生成、情绪对抗样本生成
引言
WGAN 的横空出世引出了一个更好度量两个概率分布差异的指标即 Wassertein 距离(或叫做推土机距离),它主要优势就在于该距离具有连续性的特质。TV 散度和 JS 散度的缺点在于这两个距离不具有连续性,这会导致在神经网络参数优化的过程中梯度会消失,KL 散度则是因为该距离不具有对称性即 。
本文会从 Monge 问题开始详细介绍关于 Wassertein 距离的一些相关背景和证明,最后给出了一个实例有助于理解 Wassertein 距离这个概念。
Monge问题(最优传输映射)
一般情况下,假定 和 是完备、可分的度量空间,例如欧式空间的子集 ,通常是紧集。 代表 上所有概率测度构成的空间。
问题1(Monge 问题或最优传输问题)给定两个概率测度 , 和一个代价函数 : ,求:
其中由映射 诱导的推前测度 定义为:
这里 是任意可测集合,映射空间:
如下图示,Monge 问题其实是在找一个最优传输映射 ,映射 将空间 映射为空间 , 是空间 中的区域, 是 在 中原像。需要满足的条件是对于 空间中区域 的测度要与 空间中区域 的测度要相等。根据下图通俗易懂的理解是面积