高效的深度学习:将深度学习模型变得更小、更快、更好的综述

本文概述了深度学习模型效率的重要性,探讨了模型大小、速度和性能之间的权衡。随着深度学习在计算机视觉、自然语言处理等领域的进步,模型的参数数量和资源需求增加,带来训练和部署的挑战。文章提出了模型效率的五个关键领域,包括建模技术、基础设施和硬件,并提供实验指导和代码以优化模型训练和部署。高效深度学习的目标是在保持性能的同时,减小模型尺寸,加快推断速度,降低训练成本,实现帕累托最优。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者 | 王馨月

学校 | 四川大学本科生

研究方向 | 自然语言处理




摘要

深度学习彻底改变了计算机视觉、自然语言理解、语音识别、信息检索等领域。然而,随着深度学习模型的逐步改进,它们的参数数量、延迟、训练所需的资源等都大幅增加。

因此,关注模型的这些内存印迹指标,而不仅仅是其质量,也变得很重要。我们提出并推动了深度学习中的效率问题,然后对模型效率的五个核心领域(跨度建模技术、基础设施和硬件)及其开创性工作进行了全面综述。

我们还提供了一个基于实验的指南和代码,供从业者优化他们的模型训练和部署。我们相信这是高效深度学习领域的第一次全面综述,覆盖从建模技术到硬件支持的模型效率领域。我们希望这份调查能够为读者提供思维模型和对该领域的必要理解,以应用通用效率技术立即获得显着改进,并为他们提供进一步研究和实验的想法,以获得额外的收获。

论文标题:

Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better

论文作者:

Gaurav Menghani

论文链接:

https://arxiv.org/abs/2106.08962


引言

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值