CIKM 2021 | 基于池化结构搜索的图分类

358a1030d460f0179b0dbf4814bfeb4c.gif

aa24d191754f4edaf354d838247122b8.png

论文标题:

Pooling Architecture Search for Graph Classification

论文地址:

https://arxiv.org/abs/2108.10587

代码地址:

https://github.com/AutoML-Research/PAS

备注:该论文已经被数据挖掘会议 CIKM 2021 接收,欢迎大家关注。如有任何问题,欢迎联系 weilanning@ict.ac.cn。

6b75d617f21f8eb6f8a218e15de155d1.png

简介

近年来 GNN(Graph Neural Network)成为工业界和学术界非常热门的一个研究方向。在图分类任务中,不同的池化操作应用在了 graph-level 的特征学习中。但是面对多样的数据集和任务,没有任何一个方法能够稳定取得 SOTA 效果。最近,斯坦福大学 Jure 教授团队在 NeurIPS 2020 的工作上也指出了这一点 [1]。

基于此,我们结合自动化机器学习(AutoML)[2-5] 来获取任务自适应的池化图神经网络。具体来说,我们提出了一个基于图分类任务的统一框架,并在此基础上设计了新的搜索空间(search space)。为效率起见,我们提出了一个 coarsening strategy 来解决池化操作的松弛问题,从而可微搜索算法(differentiable search algorithm)可以被应用到池化结构搜索中。我们的池化结构搜索方法(Pooling Architecture Search,简记为 PAS)能够在取得 SOTA 表现的同时还十分高效。

4b3191b053f812221e25d45143c3f065.png

背景介绍

图分类任务有大量的应用场景,比如蛋白质/化学分子性质预测 [6],社交网络分析 [7],文档分类 [8] 等,如图 1 所示。

fffb076522de01b930b2c7c3fb482572.png

27f1601f9aadd153c894d1678d4d7bb7.png

028f5e498dfe0d3789935e0961d62609.png

▲ 图1:图分类的应用场景示例

相比较于 node-level 的任务,图分类任务需要学习 graph-level 的特征表示,池化操作也由此被提出。一个简单直接的方案就是取所有节点的的特征均值或者和,这类操作被称为全局池化操作(global pooling);这类操作学到的是单层次的 graph-level 特征,无法捕获图结构中的层次化信息。层次化的池化(hierarchical pooling)方案就是为了解决这个问题,它通过生成越来越粗粒度的图来提取层次化的 graph-level 信息。

现有的图分类方案提供了不同的 global 和 hierarchical 的池化方案,比如 DGCNN [10],DiffPool [11],SAGPool [12],ASAP [13],Graph U-Net [14] 等。现有的 GNN 结合神经网络结构搜索(neural architecture search,简记为NAS)的方案,都是专注于

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值