​WWW 2023 | 自适应长程信息建模的图神经网络

本文介绍了LRGNN,一种基于堆叠的图神经网络,旨在解决图分类任务中的长程信息依赖问题。通过神经网络结构搜索,LRGNN自适应地设计深度和跳跃连接,以捕捉图中的长程信息,同时保持结构信息的完整性。实验表明,LRGNN在多个数据集上表现出优越性能,验证了其在捕获长程依赖和避免过平滑问题方面的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

56ff5d8f3b4d6f0f9d738bbfcd48283b.gif

©PaperWeekly 原创 · 作者 | 陈卓群

单位 | 清华大学

63b991469140ead0528dc3074e12faaa.png

基本信息

84019491cb9d6c6c6be76b0eee3a0d9f.png

论文标题:

Search to Capture Long-range Dependency with Stacking GNNs for Graph Classification.

收录会议:

International World Wide Web Conference. (The WebConf) 2023

论文地址:

https://arxiv.org/pdf/2302.08671.pdf

代码链接:

https://github.com/LARS-research/LRGNN

合作机会:

清华大学电子系科研助理、博士后招聘;第四范式实习生招聘(见文末)

8cb82d03f7dae5a18a83fa9fa17044bb.png

引言

图分类任务有大量的应用场景,比如图 1 中所示的化学/蛋白质分子性质预测,社交网络分析,文档分类等。图神经网络(Graph Neural Network, GNN)已成为目前任务的 SOTA 方案。

9a34d28a717983d525e5eaedc6c3368f.png

▲ 图1:图分类的应用场景示例

捕获远距离节点的信息交互,即长程信息依赖(Long-Range Dependency)对图分类任务的学习至为重要 [1,2]。纵观现有的技术方案,基于堆叠的图神经网络(stacking-based GNN)通过加深模型来扩大节点感受野,进而获取更远端的节点的信息。然而考虑到过平滑(over-smoothing)问题,两至三个聚合操作是常用的配置 [7,8],这限制了模型对于长程信息的获取。

我们在理论和实验上验证了过平滑对图分类任务的影响相比较于节点分类任务更小,并基于堆叠 GNN 提出了一种用于捕获长程信息依赖的自动化图神经网络设计方案 LRGNN(Long-Range Graph Neural Network)。

本文点明了捕获长程信息依赖过程中的两个要素,即足够深的 GNN 模型和自适应的跳跃连接设计(skip-connection scheme)。基于这两个关键点,我们将模型深度和跳跃连接整合为层间连接的方式,基于神经网络结构搜索(Neural Architecture Search,NAS)的方法来设计 GNN。基于此,设计出来的GNN具有自适应的深度和跳跃连接,可以自适应的捕获图中的长程信息依赖。

现有图分类解决方案中,池化操作(pooling operation)可以利用新增的边来加快图上信息传播进而加速长程信息提取,比如 DiffPool [3];整合高阶邻居(higher-order neighbors)信息可以直接获取图中的远距离节点间的交互信息,比如基于 virtual node 的方案 [4],全连接图(fully connected graph)的 [5],和基于 Global-attention 的方案 [6]。

但是这类方案会修改图结构, 造成信息丢失和模型判别能力的下降(参见论文附录A.4)。和此类方案相比,LRGNN 这种基于堆叠 GNN 的方案能够更好的保有图中的结构信息。

9267fb06a8a13a550b84dc1e75b4549c.png

核心思想

### 联邦图神经网络概述 #### 原理 联邦图神经网络(Federated Graph Neural Networks, FGNNs)是一种结合了联邦学习和图神经网络的技术。联邦学习允许多个参与方在不共享本地数据的情况下协作训练机器学习模型,从而保护用户隐私并满足法规要求。FGNNs特别适用于处理分布式图结构化数据集的情况。 具体来说,在联邦设置下,各个客户端持有部分子图的数据片段而不是完整的全局视图。这些局部子图可能来自不同机构或设备上的独立部署环境。为了使GNN能够在这种分布式的环境中有效工作,需要解决几个挑战: - **异构性和稀疏性**:由于各节点之间的连接模式差异较大以及边的数量相对较少,这增加了跨站点聚合参数时的一致性难度; - **通信开销**:频繁上传下载权重更新会消耗大量带宽资源,因此设计高效的压缩算法至关重要; 针对上述问题,研究人员提出了多种解决方案,比如采用分层聚类的方法减少冗余计算、引入量化技术降低传输成本等措施来优化整个系统的性能表现[^2]。 #### 实现方式 构建一个成功的联邦图神经网络通常涉及以下几个关键技术组件: 1. **安全多方计算协议** 安全多方计算(Secure Multi-party Computation, SMPC)用于保障参与者之间交互的安全性。它使得各方可以在不知道其他任何一方输入的前提下共同完成特定函数运算。 2. **差分隐私机制** 差分隐私(Differential Privacy, DP)作为一种强大的统计工具被广泛应用于防止敏感信息泄露的风险之中。通过对原始梯度加入噪声扰动可以有效地抵御潜在攻击者试图从最终输出反推出个体样本属性的行为。 3. **高效同步策略** 针对大规模复杂网络拓扑特性所特有的长程依赖关系难以捕捉这一难题,开发人员探索出了诸如FedProx之类的改进型SGD变体作为默认优化器选项之一。此外还有基于元学习思路定制化的自适应步长调整方案可供选择。 以下是Python中简单模拟联邦图神经网络的一个例子: ```python import torch from torch_geometric.nn import GCNConv class FederatedGCN(torch.nn.Module): def __init__(self): super(FederatedGCN, self).__init__() self.conv1 = GCNConv(16, 32) self.conv2 = GCNConv(32, 64) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index).relu() x = self.conv2(x, edge_index) return x ``` 此代码定义了一个两层的图形卷积网络(GCN),并通过`torch_geometric`库实现了基本功能。实际应用中还需要考虑更多细节如加密通讯接口搭建等问题。 #### 应用场景 随着物联网(IoT)的发展和个人移动终端普及程度不断提高,越来越多的真实世界现象可以用带有时间戳标记的空间位置记录下来形成时空序列图表征形式。这类特殊类型的图非常适合用来做如下几方面的分析任务: - **社交平台好友推荐**: 利用用户的兴趣爱好标签建立关联矩阵进而挖掘潜在联系人; - **医疗健康监测预警**: 对患者生理指标变化趋势建模预测疾病爆发可能性大小; - **智慧城市交通流量调控**: 结合道路网布局规划公交线路提高出行效率; 综上所述,联邦图神经网络不仅继承和发展了传统集中式架构下的优势特点,同时也克服了一些固有的局限之处,在众多新兴领域展现出了广阔的应用前景.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值