©PaperWeekly 原创 · 作者 | 苏剑林
单位 | 追一科技
研究方向 | NLP、神经网络
如果将训练模型比喻为“炼丹”,那么“炼丹炉”显然就是优化器了。据传 AdamW 优化器是当前训练神经网络最快的方案,这一点笔者也没有一一对比过,具体情况如何不得而知,不过目前做预训练时多数都用 AdamW 或其变种 LAMB 倒是真的。然而,正如有了炼丹炉也未必能炼出好丹,即便我们确定了选择 AdamW 优化器,依然有很多问题还没有确定的答案,比如:
1. 学习率如何适应不同初始化和参数化?
2. 权重衰减率该怎么调?
3. 学习率应该用什么变化策略?
4. 能不能降低优化器的显存占用?
尽管在实际应用时,我们大多数情况下都可以直接套用前人已经调好的参数和策略,但缺乏比较系统的调参指引,始终会让我们在“炼丹”之时感觉没有底气。在这篇文章中,我们基于 Google 最近提出的 Amos 优化器的思路,给出一些参考结果。
基础回顾
Amos 优化器出自最近的论文《Amos: An Adam-style Optimizer with Adaptive Weight Decay towards Model-Oriented Scale》[1],它对上述几个问题都推导了比较完整的推导,并通过实验证实了它的有效性。然而,原论文的推导实在是不好读,各种记号和估计都过于随意,给人很“凌乱”感觉。不过好在 Amos 的思想还不算复杂,我们可以借用一下。
在开始推导之前,我们不妨先回顾一下对于上述几个问题,现有的解决方案是怎样的。
首先,第一个问题,大家可能不大理解“初始化”和“参数化”分别是什么含义,其实这就是模型权重的两种设置方式,常见的就是一个 的矩阵,一般用“均值为 0、方差为1/n”的方式初始化,详细介绍可以参考笔者之前《从几何视角来理解模型参数的初始化策略》[2]、《浅谈Transformer的初始化、参数化与标准化》[3]。
从“方差为 1/n”我们就可以看到,不同参数有着不同的尺度(或者说数量级),如果我们用同一个学习率更新所有参数,那么就会导致每个参数的更新幅度不一样。这个问题笔者觉得比较优雅的解决方案就是 LAMB 优化器,它每次更新的模长直接取决于参数本身的模长,学习率只是用来描述相对更新量的大小。
至于权重衰减率问题,至少在预训练领域,笔者观察到的是都是沿用最早的选择 0.01,没有发现去调整该参数的工作。而对于学习率变化策略,大家都知道应该要将学习率慢慢降到零,但具体应该选用什么什么下降策略,暂时也没有太多的理论指导,多数结果也只是实验总结出来的。
最后,关于节省显存问题,比较经典的工作就是 AdaFactor 优化器,笔者之前在《AdaFactor优化器浅析(附开源实现)[4]》也有过介绍。降低优化器显存占用的主要就两个思路,一是去掉动量,二是对二阶矩做低秩分解,Amos 本质上也是沿用了这两个思路。
问题设置
本文主要关心开头的前三个问题,希望能够推导出一些“即插即用”的结果。首先,我们将优化器的更新规则简写成:
其实 分别代表 时刻的参数值, 代表 时刻的更新向量(依赖于任务和数据),而标量 (向量的每个元素都大于 0)代表 时刻的学习率。