GPU算力平台

本文主要介绍一些按量计费的 在线 GPU 算力平台.

AutoDL

官网https://www.autodl.com/
这家是我目前最常用的平台,价格应该也是最低的,但是卡经常不够(4090 倒是经常有空余的)

配置

GPU 方面
image.png
CPU 方面
image.png

价格

image.png
价格可以按小时计费(或者换算),包日/周/月
各个地区之间的数据不互通,只能在同一地区之间共享数据/克隆数据,有个好处就是当前机子没有卡的时候,可以克隆数据到同一地区有卡的机子
最常用的机子(比较抢手)
image.png
富哥
image.png
内蒙 A 区的机子传数据有些问题
image.png
这个平台是自带网盘(也可以使用百度网盘,看文档),可以往里面上传数据,这个网盘是直接挂载到系统中的.但是我往内蒙 A 区上传几个 G 的文件时,一查 MD5 已经变了,解压后是损坏的.

使用

环境方面提供了很多镜像,基本上是开机就能使用了
这些都是支持的
image.png
也能自己搭建环境
提供了 jupyter 和 ssh 方式进行使用,可以使用 vscode

学生认证

使用教育邮箱认证
image.png

飞桨AI Studio星河社区

官网https://aistudio.baidu.com/index
这个是免费的,虽然也有付费(要开会员,20 一个月),只支持飞桨环境
image.png
image.png
里面的 jupyter 是魔改过 UI 的,用起来不太习惯

kaggle

官网https://www.kaggle.com/
使用 GPU 需要验证手机号
image.png
image.png
每周30h的免费GPU

阿里云

官网https://cn.aliyun.com/product/ecs/gpu
image.png
image.pngimage.png
基本上不用考虑了,用不起
但是阿里云提供试用
阿里云试用宝典:https://developer.aliyun.com/free/
image.png
环境方面也是和 autodl 差不多的
这个是一次性的,3 个月内有效,用完就没了

小牛云

官网http://calf-ai.com/
这个平台提供 Windows 主机
image.png
环境也是直接用的
image.png
价格比 autodl 贵一些
image.png

DeepLn

官网https://deepln.com/
image.png
环境方面支持的比 autodl 少
image.png
价格比 autoal 便宜一些,配置也更强大
image.png
但是数据上传要开机才能操作
image.png

矩池云

官网https://www.matpool.com/
image.png
支持 jupyter 和 ssh
网盘容量比 autodl 小
image.png
部分机子支持 Windows
image.png
相对于 autodl 价格翻倍

恒源云

image.png
image.png
image.png
价格和 autodl 差不多
image.png
环境
image.png
学生认证很麻烦
image.png
image.png
存储方面不如 autodl
使用也是支持 jupyter 和 ssh

<think>好的,我现在需要帮助用户了解如何将代码部署到GPU平台。根据用户提供的引用内容,我需要整理出具体的步骤和方法。首先,我需要理解用户的问题是什么,然后根据提供的引用资料找到相关的信息点。 首先,用户提到参考了四个引用,其中引用[1]、[2]、[3]、[4]都涉及GPU平台的部署。特别是引用[2]详细介绍了GPU平台的优势和部署教程,比如Qwen-2模型的部署步骤。引用[4]提到了Determined AI的部署方法,包括Master和Agent的概念,以及如何通过命令行和Shell使用集群资源。 接下来,我需要将部署过程分步骤说明。根据引用[2],部署流程可能包括注册、环境配置、模型选择和部署测试。例如,用户需要登录平台,选择Settings进行URL配置,然后选择适合的模型进行部署。此外,引用[4]中的Determined AI教程可能涉及到集群的配置和任务提交,比如使用命令行工具提交作业。 另外,用户可能关心如何优化代码以适应GPU环境,比如使用CUDA或PyTorchGPU支持。需要提到代码中的GPU相关配置,如指定GPU设备、管理内存等。引用[2]提到平台支持多种NVIDIA GPU型号,因此代码需要兼容这些硬件。 还要注意安全性,引用[2]提到平台有完善的安全机制,所以用户可能需要配置访问权限或使用SSH密钥。此外,资源管理方面,用户可能需要了解如何通过平台调整计资源,如引用[2]中提到的Kubernetes原生云设计,允许灵活调整资源。 最后,需要生成相关问题,可能涉及性能调优、环境配置、工具选择等,如如何监控GPU使用情况,如何选择适合的GPU型号,或者如何处理多节点并行计的问题。这些问题需要基于用户提供的引用内容,确保相关且有依据。</think>### 如何将代码部署到GPU平台? #### **部署流程分步说明** 1. **注册与登录** 在目标GPU平台(如蓝耘GPU云、Determined AI集群等)完成账号注册和登录。部分平台可能需实名认证或企业资质审核[^2][^4]。 2. **环境配置** - **GPU资源选择**:根据任务需求选择适合的GPU型号(如RTX 4090、A100等)和数量。 - **系统镜像配置**:在平台提供的镜像库中选择预装框架(如PyTorch、TensorFlow、CUDA工具包)的环境,或自定义Docker镜像。 - **依赖安装**:通过Shell或命令行安装代码所需的额外依赖包。例如: ```bash pip install -r requirements.txt ``` 3. **代码适配与优化** - **GPU设备指定**:在代码中明确调用GPU资源。例如PyTorch中: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) ``` - **并行计支持**:使用多卡训练时,需添加分布式训练逻辑(如`torch.nn.DataParallel`)[^3]。 4. **任务提交与监控** - **命令行提交**:通过平台提供的CLI工具或Web界面提交任务。例如Determined AI支持以下方式: ```bash det experiment create config.yaml . ``` - **日志与资源监控**:在平台控制面板中查看GPU利用率、内存占用等实时指标[^4]。 5. **数据与模型管理** - **数据上传**:将数据集上传至平台提供的存储服务(如NFS、S3兼容存储)。 - **模型持久化**:训练完成后,将模型权重保存至平台对象存储或私有仓库[^3]。 --- #### **关键配置示例** 以部署大模型(如LLama3、Qwen-2)为例: 1. **选择预置模板**:平台通常提供大模型部署模板,包含优化后的Dockerfile和启动脚本[^2]。 2. **资源配置文件**(`config.yaml`): ```yaml resources: slots_per_trial: 8 # 使用8个GPU hyperparameters: batch_size: 64 learning_rate: 0.001 ``` --- #### **注意事项** - **成本控制**:选择按需付费模式,避免闲置资源产生额外费用。 - **安全策略**:配置SSH密钥对、VPC网络隔离,确保代码和数据安全[^4]。 - **故障排查**:利用平台提供的日志分析工具定位GPU内存溢出或驱动兼容性问题。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值