ICML 2024 | 新型傅立叶微调来了!脱离LoRA架构,训练参数大幅减少

f038a2b6242238270015142ff1bb44a1.gif

©作者 | 机器之心编辑部

来源 | 机器之心

本文介绍了香港科技大学(广州)的一篇关于大模型高效微调(LLM PEFT Fine-tuning)的文章「Parameter-Efficient Fine-Tuning with Discrete Fourier Transform」,本文被 ICML 2024 接收,代码已开源。

d63918323a460cec6d0294b76d9b09fb.png

论文标题:

Parameter-Efficient Fine-Tuning with Discrete Fourier Transform

论文链接:

https://arxiv.org/abs/2405.03003

项目链接:

https://github.com/Chaos96/fourierft

8426609731aaecbbb4e1a246a24d219a.png

背景

大型基座模型在自然语言处理(NLP)和计算机视觉(CV)领域都获得了瞩目的成就。微调(Finetuning)大型基座模型,使其更加适应特殊的下游任务,成为了一项热门研究课题。然而,在模型越来越大,下游任务越来越多样的今天,微调整个模型带来的计算、存储消耗已大到不再能被接受。

LoRA 采用低秩拟合微调增量的方案,成功降低了大量的此类消耗,但每个适应器(adapter)的大小仍然是不可忽视的。这激发了本文的核心问题:相比 LoRA,如何进一步大幅减少可训练参数?此外,一个有趣的附加问题是能否采用更少的参数量得到高秩增量矩阵

方法

傅立叶基底在各类数据压缩应用中广泛使用,例如一维向量信号和二维图像的压缩。在这些应用中,稠密的空域信号通过傅立叶变换被转化为稀疏的频域信号。基于这一原理,作者推测模型权重的增量也可以被视为一种空域信号,其对应的频域信号可以通过稀疏表示来实现。

在这一假设的基础上,作者提出了一种新的方法,用于在频域中学习增量权重信号。具体来说,该方法通过随机位置的稀疏频域信号来表示空域权重增量。在加载预训练模型时,首先随机选择 n 个点作为有效的频域信号,然后将这些信号拼接成一个一维向量。

在前向传播过程中,这个一维向量被用来通过傅立叶变换恢复空域矩阵;在反向传播过程中,由于傅里叶变换的可导性,可以直接对此可学习的向量进行更新。这种方法不仅有效减少了模型微调时所需的参数数量,同时保证了微调性能。通过这种方式,作者不仅实现了对大规模基础模型的高效微调,还展示了傅立叶变换在机器学习领域中的潜在应用价值。

166b136e9af236a07bc77a889898460e.png

得益于傅立叶变换基底的高信息量,仅需很小的 n 值即可达到与 LoRA 相当甚至超过 LoRA 的表现。一般来说,傅立叶微调的可训练参数仅为 LoRA 的千分之一到十分之一。

6b9ab0c1eb9d81f549d291ee64054541.png

实验

1. 自然语言理解

作者在自然语言理解的 GLUE 基准测试上对傅立叶微调方法进行了评估。基线对比方法包括全量微调(FF,Full Finetuning)、Bitfit、适应器微调(Adapter Tuning)、LoRA、DyLoRA 和 AdaLoRA。下表展示了各种方法在 GLUE 各个任务上的表现及其所需的训练参数量。结果表明,傅立叶微调以最少的参数量达到了甚至超越了其他微调方法的性能。

7a58d6c6d87cf2a1f3dae9d179a5279f.png

2. 自然语言指令微调

大模型的自然语言生成是目前模型微调的重要应用领域。作者在 LLaMA 系列模型、MT-Bench 任务和 Vicuna 任务上评估了傅立叶微调的性能。结果显示,傅立叶微调以极低的训练参数量达到了与 LoRA 相似的效果,进一步验证了傅里叶微调方法的通用性和有效性。

b8576c6b6f5f8f10e1490785694940f9.png

3. 图像分类

作者在 Vision Transformer 上测试了傅里叶微调的性能,涵盖了 8 个常见的图像分类数据集。实验结果表明,虽然在图像分类任务中傅立叶微调相较LoRA的压缩率提升并不比自然语言任务中显著,但其仍然以远小于 LoRA 的参数量超越了 LoRA 的效果。这进一步展示了傅立叶微调在不同应用领域中的有效性和优势。

996352d70e42500db0d26b6bc3fa6895.png

4. 突破低秩

在 GLUE 基准的 RTE 数据集上,FourierFT 可以实现明显高于 LoRA (通常为 4 或 8) 的增量的秩。

816eb0dc18979ffe973a7e1974b2dcdb.png

5. GPU 资源消耗

微调过程中,FourierFT 可以实现比 LoRA 更少的 GPU 消耗。下图为采用单张 4090 显卡在 RoBERTa-Large 模型上的巅峰内存消耗。

dfb752b7a6d317ee0ffdf34a6dfc0599.png

01badacc96b5baebad4d5ec4a779e16a.png

结论

作者介绍了一种名为傅立叶微调的高效微调方法,通过利用傅里叶变换来减少大基础模型微调时的可训练参数数量。该方法通过学习少量的傅里叶谱系数来表示权重变化,显著降低了存储和计算需求。实验结果显示,傅立叶微调在自然语言理解、自然语言生成、指令调优和图像分类等任务上表现优异,与现有的低秩适应方法(如 LoRA)相比,傅立叶微调在保持或超过 LoRA 性能的同时,所需的可训练参数大幅减少。

更多阅读

d164b182a0b7a78c00aa1c2d6a449aa8.png

9fe73f9879c09a9e64deaa0a15f8e150.png

4586f88fe88a80a864a528005031b07b.png

ffd7b36dae2d2a2c5903febd65666899.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

62529c7924ab9d05e43ec2aa855eace0.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

·

323c44483a958333a30605c1ea5e54c7.jpeg

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值