©PaperWeekly 原创 · 作者 | 蒙子卓
单位 | 悉尼科技大学博士生
研究方向 | 可解释性点过程
本篇文章介绍了可解释性点过程对社交网络交互的挖掘。该文章已被 KDD 2024 收录,目前代码已开源。
论文标题:
Interpretable Transformer Hawkes Processes: Unveiling Complex Interactions in Social Networks
论文链接:
https://arxiv.org/abs/2405.16059
代码链接:
https://github.com/waystogetthere/Interpretable-Transformer-Hawkes-Process
背景
社交网络中用户的行为,如网络购物平台用户的浏览,购买等可建模为各种类型的事件。不同类型事件之间的相互影响对其发生起到关键作用。然而,挖掘这些互动一直是时序点过程领域的难题。现有的深度时序点过程模型在社交网络中存在局限性,其无法直接显式挖掘事件类型之间的影响,这限制了其可解释性和表达能力。
本研究提出 Interpretable Transformer Hawkes Process (ITHP),对现有的 Transformer Hawkes Process (THP, Zuo et al.) 进行了改进。ITHP 结合了 THP 与统计非线性 Hawkes Process 的优势,在保证了深度点过程的表达性的情况下对齐了非线性 hawkes process 的核函数,从而能够显式提取事件类型之间的影响。ITHP 还提高了非事件间隔期间强度函数的灵活性,更适合捕捉社交网络中的复杂事件传播模式。