KDD 2024 | 已开源!可解释性点过程对社交网络交互的挖掘

3d72d9706ec7cc64a29cd9c1f57a2a46.gif

©PaperWeekly 原创 · 作者 | 蒙子卓

单位 | 悉尼科技大学博士生

研究方向 | 可解释性点过程

本篇文章介绍了可解释性点过程对社交网络交互的挖掘。该文章已被 KDD 2024 收录,目前代码已开源。

de9b92478f2cc5514375d30579864079.png

论文标题:

Interpretable Transformer Hawkes Processes: Unveiling Complex Interactions in Social Networks 

论文链接:

https://arxiv.org/abs/2405.16059 

代码链接:

https://github.com/waystogetthere/Interpretable-Transformer-Hawkes-Process

992147a05a99a92a99f3b61cf7b0ee43.png

背景

社交网络中用户的行为,如网络购物平台用户的浏览,购买等可建模为各种类型的事件。不同类型事件之间的相互影响对其发生起到关键作用。然而,挖掘这些互动一直是时序点过程领域的难题。现有的深度时序点过程模型在社交网络中存在局限性,其无法直接显式挖掘事件类型之间的影响,这限制了其可解释性和表达能力。

本研究提出 Interpretable Transformer Hawkes Process (ITHP),对现有的 Transformer Hawkes Process (THP, Zuo et al.) 进行了改进。ITHP 结合了 THP 与统计非线性 Hawkes Process 的优势,在保证了深度点过程的表达性的情况下对齐了非线性 hawkes process 的核函数,从而能够显式提取事件类型之间的影响。ITHP 还提高了非事件间隔期间强度函数的灵活性,更适合捕捉社交网络中的复杂事件传播模式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值