优化传统MoE结构,腾讯混元团队提出专家差异化新思路

de63968e3116bf477e74f47253fe9561.gif

在当前的大模型研究领域,MoE(混合专家)模型正迅速成为焦点。相比传统的 Dense 模型,MoE 模型凭借其稀疏激活特性,在增加模型总参数的同时,有效控制了激活参数的数量,从而大幅提升计算效率。此外,每个专家专注于处理特定的数据和特征,使得模型能够更好地捕捉数据的多样性,显著增强整体性能。多个专家的协同计算还减少了过拟合风险,提高了模型的鲁棒性。

然而,MoE 领域的研究与创新主要集中在优化模型训练和路由策略上。目前主流的 MoE 模型大多基于 Google 于 2020 年提出的混合同构专家模型 Gshard。但 MoE 结构里的专家设计上长期未能取得显著进展。MoE 模型面临以下三大挑战:

  1. 专家专业化程度不足,导致路由随机分发 token,专家在训练中趋同

  2. 参数分配不够高效,简单输入消耗过多计算资源,而复杂输入得不到充分处理

  3. 表示坍缩和负载不均衡问题,限制了模型的表达能力和计算效率。

论文题目:

HMoE: Heterogeneous Mixture of Experts for Language Modeling

论文链接:

https://arxiv.org/abs/2408.10681

为了应对这些挑战,腾讯混元团队创新性地提出了混合异构专家模型(HMoE)。在 HMoE 中,每个专家的大小不再相同,从而赋予了每个专家不同的表达能力。这种差异化设计使得路由可以根据专家的实际能力动态分配不同难度的 token,有效解决了专家专业化程度不足的问题。 

3ad9e0791a9a58b3b26fce8826fca70f.png

▲ 左:传统 MoE 结构,右:混合异构 MoE 结构

实验上,HMoE 无论在性能上还是效率上都显著优于传统 MoE。随着训练进行,HMoE 的激活参数更少,在下游任务上的性能更强。 

41897a321051e8e8bb62c60d5cb0a960.png

▲ 左:不同模型的性能和激活参数对比,右:随着训练进行,相同成本的性能对比 

5a51db627e2b678a237c4e26a99e4ae8.png

▲ 左:不同训练成本下的最佳激活参数,右:最佳激活参数设定下的 loss 对比

为了实现更高效的参数分配并利用 MoE 的负载不均衡现象,腾讯混元团队还提出了激活更多小专家的策略。他们设计了 P-Penalty Loss 来惩罚模型倾向于激活大专家的行为,从而引导模型更多地激活小专家: 

0a02a0dc67ce24608452ca87220dedc5.png▲ 根据每个专家 Hidden state 的大小进行惩罚

这一策略不但有助于提高计算效率,而且也是使得 HMoE 在同等算力消耗下能让效果更佳的关键所在: 

832dd80f9efefd2e0be4f9d53924acd5.png

▲ 不同辅助 Loss 对模型效果的影响(左)。负载平衡 Loss(右上)和 P-Penalty Loss(右下)下,激活参数比率与专家尺寸的关系(a-h 专家尺寸逐渐变大)

此外,腾讯混元团队还对 HMoE 的异构性进行了深入探索。他们设计了服从等比数列和等差数列的模型大小分布,并发现合理的模型大小差异对模型训练效果和稳定性具有至关重要的影响。通过调整异构性的设计,他们进一步提高了 HMoE 的性能。    

bf042f1ce79a2be0d5da8a601c0757f2.png

8dbb847dc24c1bd26a7395d54c979794.png

▲ 左:不同异构策略下模型效果比较,右:等差异构策略下“异构程度”对 Loss 的影响

在对异构 expert 的行为进行深入分析后,腾讯混元团队发现大小相近的专家相似度更高,小专家更频繁地参与其他专家的协同计算。这些发现揭示了小专家在通用语言理解能力上的优势,以及大专家在处理复杂 token 时的重要性。 

7eb270add2b6b4d5c382541419ee4723.png

▲ 不同难易程度的词在不同大小专家上的激活百分比(a-h专家尺寸逐渐变大)

腾讯混元团队还对不同尺寸的专家进行了相似性分析和协同性分析。团队发现,尺寸相近的专家通常表现出更大的相似性。这表明它们倾向于发展出类似的能力,强调了异质性的重要性。另外,较小的专家比较大的专家参与合作更多,这表明 HMoE 中的小专家具有更广泛的通用语言理解能力。 

fdd38db9375b4e9911aca4b176ba493f.png

▲ HMoE 专家的相似性(左)和协同作用(右)分析,颜色越偏向蓝色相似性/协同作用越强(a-h 专家尺寸逐渐变大)

混合异构专家的结构对训练框架层面也造成一些挑战。首先,专家模型形状不统一使传统的批量矩阵乘法方法失效。但是参考 Megablocks 的思路,可以使用块稀疏矩阵乘法,有效应对不同大小专家模型带来的复杂性。其次,异构专家模型导致计算和通信不平衡,资源利用效率低下。借鉴 ES-MoE 的方法,通过专家级卸载和动态专家放置,将专家参数卸载到 CPU 内存,并根据需要取回 GPU,从而缓解负载不平衡问题。

混合异构专家模型(HMoE)的推出可以被视为 MoE 研究领域的一个新的里程碑。相较于传统 MoE 模型,HMoE 在激活参数更少的情况下实现了更强的性能。它能够灵活理解和平衡分配不同难度的输入,在简单任务上实现高效计算,在困难任务上展现强大语言性能。

腾讯混元团队正在进行更大尺寸的 HMoE 的训练开发中,未来还会进行更深入的研究探索,比如:Infra 侧同步的在训练和推理端的优化、对不同尺寸专家结合之前工作腾讯混元、北大发现 Scaling law「浪涌现象」,解决学习率调参难题,结果采用不同的学习率和 Scaling 策略,对模型异构性进行进一步探索等。

这些研究方向将会进一步提升 HMoE 的性能和应用潜力。腾讯混元团队的这一创新成果不仅展示了他们在推动人工智能技术进步方面的持续努力,也为未来大模型研究提供了新的方向。

🌟本文内容已获论文原作者独家授权发布,如需转载请联系PaperWeekly工作人员微信:pwbot02,添加时请备注「转载」。

更多阅读

f8c404504ff87df7a43de1cc07384931.png

6c646060117d2a6b98ce5ffa2917a35a.png

c1707ca956de0db89c0b8d5232469a22.png

更多阅读

3511d8b9bf73c93d6e93e21da2ec975c.png

e21fe0e5e721ca4f2190df62f5faae21.png

46e8d87a5042d8fe6e4c804cdb684a44.png

6be8ba1c6e8a36756ddbad93c9ee3411.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

e61e6c65d02d958947ded813e8e87e04.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

f7b19e4d0ad692868c4ca824dead9bc7.jpeg

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值