顶刊TPAMI 2024!北理等提出FreqFusion,让CVPR投稿轻松涨点

2e33d0d9a568caf772b954670828ff2f.gif

©PaperWeekly 原创 · 作者 | 知凡

单位 | 北京理工大学

研究方向 | 图像检测分割

大家是不是埋头准备 CVPR 2025 的投稿苦于涨点困难?快来看看热气腾腾的新鲜 TPAMI 2024 论文:

dcdbd313349da42e1788e561da4f3e1f.png

论文标题:

Frequency-aware Feature Fusion for Dense Image Prediction

论文链接:

https://www.arxiv.org/abs/2408.12879

代码已开源:

https://github.com/Linwei-Chen/FreqFusion

在语义分割、目标检测、实例分割、全景分割上都涨点!

68fc9175aed9aef6ee1e8fa6e9c4c7b9.png

这篇论文做了什么?

现有的语义分割、目标检测等高层密集识别模型中,往往需要将低分辨高层特征与高分辨率低层特征融合,例如 FPN:

a51fbe78fec4e17963e6d04129768bc4.png

虽然简单,但这样粗糙的特征融合方式显然不够优秀,一方面特征本身对同一类目标的一致性不够高,会出现融合特征值在对象内部快速变化,导致类别内不一致性,另一方面简单的上采样会导致边界模糊,以及融合特征的边界模糊,缺乏精确的高频细节。

50a5ba31a62d3bbb924c2de3017ec277.png

c91ae6dcd89ffd72b12fd16374a7b83a.png

提出了什么方法?

FreqFusion 提出:为了解决这些问题,作者提出了一种名为 Frequency-Aware Feature Fusion(FreqFusion)的方法。FreqFusion 包括:

  • 自适应低通滤波器(ALPF)生成器:预测空间变化的低通滤波器,以在上采样过程中减少对象内部的高频成分,降低类别内不一致性。

  • 偏移生成器:通过重采样,用更一致的特征替换大的不一致特征,使得同一类目标特征更稳定一致。

  • 自适应高通滤波器(AHPF)生成器:增强在下采样过程中丢失的高频细节边界信息。

93b77917eeac946711327889504c2bb7.png

用特征图进行分析对比,发现 FreqFusion 各个部分都可以显著提高特征的质量!

c4befd5a1109d56ae3f63c0343828466.png

文中给了大量的分析和详细的说明,具体方法可以看原文~

84ee6a29b5b23a0716660f091566b565.png

涨点涨了多少?

3.1 语义分割semantic segmentation

轻量化语义分割 SegNeXt,在 ADE20K 上 +2.4 mIoU(实际 checkpoint,+2.6mIoU)

c0cf31e16f1ac526df114dfd0c19e5ce.png

强大的 Mask2Former 已经在 ADE20K 上取得很好的结果,FreqFusion 还能狠狠进一步讲 Swin-B 提升 +1.4 mIoU(实际给出的 checkpoint,+1.8 mIoU),即便是重型的 Swin-Large,也能提升高 +0.7 mIoU(实际给出的 checkpoint,+0.9 mIoU)。不得不说论文里汇报的结果还是保守了。

4e667bac6b390f76a203d7425ece211c.png

3.2 目标检测object detection

Faster RCNN +1.9 AP(实际公开的 checkpoint,+2.0 AP)

ca5a47d8c18defe1e5e44c6757808237.png

3.3 实例分割instance segmentation

Mask R-CNN,+1.7 box AP,+1.3 mask AP。

2b9228abb50093c4a3e3a4120db8ceb0.png

3.4 全景分割panoptic segmentation

PanopticFCN,+2.5 PQ。

f1bd79dea68088d0b46a3f34eaf60cf2.png

3a123cf4f23104ed47e26afba32619da.png

如何使用?

简单来说,示例如下:

m = FreqFusion(hr_channels=64, lr_channels=64)
hr_feat = torch.rand(1, 64, 32, 32)
lr_feat = torch.rand(1, 64, 16, 16)
_, hr_feat, lr_feat = m(hr_feat=hr_feat, lr_feat=lr_feat)

FreqFusion 的简洁代码可在此处获得。通过利用它们的频率特性,FreqFusion 能够增强低分辨率和高分辨率特征的质量(分别称为  lr_feat  和  hr_feat ,假设的大小  hr_feat  是的两倍  lr_feat )。用法非常简单,只要模型中存在 这种形式的不同分辨率特征相融合的情况就可以使用 FreqFusion 对模型进行提升涨点。

更多阅读

d96b7c638aa85fe122db8f6af8ecd09b.png

b4cf874604e8c30797b8f95f1299a7f9.png

5db42f2319727cc9b3daa4a727ba7535.png

a5c2b669c7b774ab4ec61f25f38941f2.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

ee2eb365ad72ea8adedefa8abc29d7e7.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

b144b0ae7ac28e153be937365a7a848c.jpeg

### 如何使用 FreqFusion 进行频率融合处 FreqFusion 是一种先进的特征融合技术,专门设计用于解决标准特征融合中存在的类别不一致和边界位移问题。该方法通过结合自适应低通和高通滤波器来提升预测性能[^3]。 #### 安装与配置 为了使用 FreqFusion,首先需要安装必要的依赖库: ```bash pip install freqfusion # 假设有一个名为freqfusion的Python包 ``` 接着,初始化 FreqFusion 模块并加载预训练模型或设置参数: ```python from freqfusion import FreqFusionModule # 初始化模块 ff_module = FreqFusionModule() # 加载预训练权重(如果有) ff_module.load_weights('path_to_pretrained_model.pth') ``` #### 数据准备 确保输入数据已经过适当预处,并转换成适合频域分析的形式。通常情况下,这涉及到将时间序列信号转化为频谱图或其他形式的频域表示法。 ```python import numpy as np # 示例:生成随机的时间序列数据作为输入 time_series_data = np.random.randn(1, 100) # 将时间序列数据转换为频域表示 frequency_domain_representation = np.fft.fft(time_series_data) ``` #### 应用 FreqFusion 应用 FreqFusion 对不同频率带的数据进行融合处。此过程涉及选择特定的频率范围(如 δ、θ、α、β 和 γ 波),并对这些频率成分执行加权平均操作以获得最终融合后的特征向量。 ```python def apply_freq_fusion(freq_representations): """ 应用 FreqFusion 特征融合 参数: freq_representations (list): 不同频率带下的特征列表 返回: fused_features (ndarray): 融合后的特征向量 """ # 执行实际的融合逻辑 fused_features = ff_module(frequency_domain_representation) return fused_features fused_output = apply_freq_fusion([delta_band, theta_band, alpha_band, beta_band, gamma_band]) ``` #### 结果评估 完成上述步骤后,可以进一步利用融合得到的新特征来进行分类、回归等下游任务,并对比未经过 FreqFusion 的原始特征表现差异。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值