©PaperWeekly 原创 · 作者 | 知凡
单位 | 北京理工大学
研究方向 | 图像检测分割
大家是不是埋头准备 CVPR 2025 的投稿苦于涨点困难?快来看看热气腾腾的新鲜 TPAMI 2024 论文:
论文标题:
Frequency-aware Feature Fusion for Dense Image Prediction
论文链接:
https://www.arxiv.org/abs/2408.12879
代码已开源:
https://github.com/Linwei-Chen/FreqFusion
在语义分割、目标检测、实例分割、全景分割上都涨点!
这篇论文做了什么?
现有的语义分割、目标检测等高层密集识别模型中,往往需要将低分辨高层特征与高分辨率低层特征融合,例如 FPN:
虽然简单,但这样粗糙的特征融合方式显然不够优秀,一方面特征本身对同一类目标的一致性不够高,会出现融合特征值在对象内部快速变化,导致类别内不一致性,另一方面简单的上采样会导致边界模糊,以及融合特征的边界模糊,缺乏精确的高频细节。
提出了什么方法?
FreqFusion 提出:为了解决这些问题,作者提出了一种名为 Frequency-Aware Feature Fusion(FreqFusion)的方法。FreqFusion 包括:
自适应低通滤波器(ALPF)生成器:预测空间变化的低通滤波器,以在上采样过程中减少对象内部的高频成分,降低类别内不一致性。
偏移生成器:通过重采样,用更一致的特征替换大的不一致特征,使得同一类目标特征更稳定一致。
自适应高通滤波器(AHPF)生成器:增强在下采样过程中丢失的高频细节边界信息。
用特征图进行分析对比,发现 FreqFusion 各个部分都可以显著提高特征的质量!
文中给了大量的分析和详细的说明,具体方法可以看原文~
涨点涨了多少?
3.1 语义分割semantic segmentation
轻量化语义分割 SegNeXt,在 ADE20K 上 +2.4 mIoU(实际 checkpoint,+2.6mIoU)
强大的 Mask2Former 已经在 ADE20K 上取得很好的结果,FreqFusion 还能狠狠进一步讲 Swin-B 提升 +1.4 mIoU(实际给出的 checkpoint,+1.8 mIoU),即便是重型的 Swin-Large,也能提升高 +0.7 mIoU(实际给出的 checkpoint,+0.9 mIoU)。不得不说论文里汇报的结果还是保守了。
3.2 目标检测object detection
Faster RCNN +1.9 AP(实际公开的 checkpoint,+2.0 AP)
3.3 实例分割instance segmentation
Mask R-CNN,+1.7 box AP,+1.3 mask AP。
3.4 全景分割panoptic segmentation
PanopticFCN,+2.5 PQ。
如何使用?
简单来说,示例如下:
m = FreqFusion(hr_channels=64, lr_channels=64)
hr_feat = torch.rand(1, 64, 32, 32)
lr_feat = torch.rand(1, 64, 16, 16)
_, hr_feat, lr_feat = m(hr_feat=hr_feat, lr_feat=lr_feat)
FreqFusion 的简洁代码可在此处获得。通过利用它们的频率特性,FreqFusion 能够增强低分辨率和高分辨率特征的质量(分别称为 lr_feat 和 hr_feat ,假设的大小 hr_feat 是的两倍 lr_feat )。用法非常简单,只要模型中存在 这种形式的不同分辨率特征相融合的情况就可以使用 FreqFusion 对模型进行提升涨点。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
·
·
·