独木不成林,随着基于大型语言模型(LLM)的智能体(agents)的发展,人们愈发意识到单个 LLM 和 Agent 的局限性。受到人类团队分工协作的启发,将多个 LLM 驱动的智能体组合成一个团队,能够更有效地解决复杂问题。然而,使用多智能体系统进行推理时,你是否遇到过这样的问题:
模型选择困难症,大模型“杀鸡用牛刀”,小模型效果一言难尽?
针对各类问题设计智能体协作模式和角色分工而绞尽脑汁?
想动态调配 LLM 资源,却不知如何平衡性能与成本?
别担心!多智能体界的“调度员”来了!由 IDEA 联手同济大学、武汉大学、南洋理工大学团队提出的 MasRouter,首次将协作模式选择 、角色分配和大语言模型调度整合成智能路由框架,为每个任务定制最佳智能体团队!
相关论文
论文标题:
MasRouter: Learning to Route LLMs for Multi-Agent Systems
论文链接:
https://arxiv.org/abs/2502.11133
代码链接:
https://github.com/yanweiyue/masrouter
背景介绍
考虑这样的两个编程问题:
编写 python 代码统计字符串的长度
从后端数据库到前端网页全面实现一个视频网站
很显然,上面两个任务的复杂度天差地别,前者只需要一个最简单的 LLM 便能很好解决,使用大且复杂的模型会造成不必要的开销;而后者则需要最先进的模型和复杂的多智能体分工、检查和迭代优化。
类似的情况在生活中经常出现,大模型多如牛毛,推理方法更是浩如烟海,如何选择合适的 LLM、协作模式以平衡效果和开销,是一个巨大的挑战。
近年来,在单智能体领域,已经有许多有效的 LLM routing 方案为不同问题动态选择 LLM。然而,单智能体能力有限,当我们希望用多智能体系统解决复杂问题时,依然会陷入选择困难症。
传统的 LLM 路由方法主要针对单智能体场景,无法应对多智能体系统中的新问题:1)如何确定多智能体协作模式;2)如何为不同的智能体分配个性化角色;3)如何为不同智能体分配合适的