GPT还是DeepSeek?不如全都要!南洋理工、IDEA等提出首个多智能体系统LLM Routing框架...

c7ee7e7d4c87f6bd0f1b4e33e8617c4c.gif

独木不成林,随着基于大型语言模型(LLM)的智能体(agents)的发展,人们愈发意识到单个 LLM 和 Agent 的局限性。受到人类团队分工协作的启发,将多个 LLM 驱动的智能体组合成一个团队,能够更有效地解决复杂问题。然而,使用多智能体系统进行推理时,你是否遇到过这样的问题:

  • 模型选择困难症,大模型“杀鸡用牛刀”,小模型效果一言难尽?

  • 针对各类问题设计智能体协作模式和角色分工而绞尽脑汁?

  • 想动态调配 LLM 资源,却不知如何平衡性能与成本?

别担心!多智能体界的“调度员”来了!由 IDEA 联手同济大学、武汉大学、南洋理工大学团队提出的 MasRouter,首次将协作模式选择角色分配大语言模型调度整合成智能路由框架,为每个任务定制最佳智能体团队!

9750b1bfbae3f9f8a9184b70c283b147.png

相关论文

8c24f7e12585c1a0851b11c6d6c1d6db.png

论文标题:

MasRouter: Learning to Route LLMs for Multi-Agent Systems

论文链接:

https://arxiv.org/abs/2502.11133

代码链接:

https://github.com/yanweiyue/masrouter

7aa697c5c31ea0215dfadc6b26489a52.png

背景介绍

考虑这样的两个编程问题:

  • 编写 python 代码统计字符串的长度

  • 从后端数据库到前端网页全面实现一个视频网站

很显然,上面两个任务的复杂度天差地别,前者只需要一个最简单的 LLM 便能很好解决,使用大且复杂的模型会造成不必要的开销;而后者则需要最先进的模型和复杂的多智能体分工、检查和迭代优化。

类似的情况在生活中经常出现,大模型多如牛毛,推理方法更是浩如烟海,如何选择合适的 LLM、协作模式以平衡效果和开销,是一个巨大的挑战。

近年来,在单智能体领域,已经有许多有效的 LLM routing 方案为不同问题动态选择 LLM。然而,单智能体能力有限,当我们希望用多智能体系统解决复杂问题时,依然会陷入选择困难症。

传统的 LLM 路由方法主要针对单智能体场景,无法应对多智能体系统中的新问题:1)如何确定多智能体协作模式;2)如何为不同的智能体分配个性化角色;3)如何为不同智能体分配合适的

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值