这个小长假,你错过了哪些精彩论文?| PaperDaily #03



在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第  3 篇文章
[ 自然语言处理 ]


Improving Word Representations via Global Context and Multiple Word Prototypes

@paperhwd 推荐

#Word Embeddings

文章试图通过在《Natural Language Processing (Almost) from Scratch》的基础上进行改进,使得词向量富含更丰富的语义信息。第一个创新是使用全文信息辅助已有的局部信息,第二个创新是使用多个词向量来表示多义词。

论文链接

http://www.paperweekly.site/papers/805


Neural Turing Machines

@Ttssxuan 推荐

#Neural Network Architectures

通过使用注意力机制以及外部存储,扩展神经网络的能力,提出类似图灵机(Turing Machine)或冯诺尹曼机(Von Neumann)的系统 Neural Turing Machines (NTM),NTM 与图灵机和冯诺尹曼机的主要区别在于,NTM 是端到端可微的,这样可能使用梯度下降有效的对 NTM 进行训练。 

本文主要从读(Reading)、写(Writing)、寻址(Addressing Mechanisms)、主控网络(Controller Network),四个方面对 NTM 进行阐述。 

读:每步产生个权重向量,向量决定内存每一行权重,向量和内存结合得到读取结果。

写:写由两部分组成,即:擦除(erase)和增强(add)。

寻址:本文提出基于内容寻址(content-based addressing)和基于位置寻址(location-based addressing)两种方式结合,形成 NTM 寻址方式。

主控网络:主要使用了 LSTM 和 Feedforward 两种方式 论文使用 LSTM、NTM(LSTM 控制器)、NTM(Feedforward 控制器),进行了拷贝(Copy)、重复拷贝(Repeat Copy)、Associative Recall、Dynamic N-Grams、Priority Sort 等对比实验。

论文链接

http://www.paperweekly.site/papers/810


Effective Approaches to Attention-based Neural Machine Translation

@zh794390558 推荐

# Neural Machine Translation

Luong Attention,乘法 Attention,Bahdanau attention(加法)的变种。论文对 Attention 机制讲述清晰,比 Bhdanau 实现简单,对比了多种 score 的方法。语法简单,很值得看的一篇论文。

论文链接

http://www.paperweekly.site/papers/806


[ 计算机视觉 ]


Speed/accuracy trade-offs for modern convolutional object detectors

@Molly 推荐

#Object Detection

对各种主流的目标检测网络进行比较(速度、正确率、大小)。 此前各模型的 base feature extractor、 图像像素、 平台都不同,不太好比较。文章给出了一个非常详尽的 Faster R-CNN, R-FCN, SSD 系统的性能比较。

论文链接

http://www.paperweekly.site/papers/840



Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

@zh794390558 推荐

#Image Captioning

Attention 在图像中的应用,15 年发表至今被引用上千次。

论文链接

http://www.paperweekly.site/papers/812



PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications

@sangiovese17 推荐

#Image Generation

改进了 Pixel CNN 算法,假设像素点服从一种确定形式的混合分布,通过 CNN 做回归直接预测分布的参数,从而直接的到分布。生成时从预测的分布抽样。

论文链接

http://www.paperweekly.site/papers/838


[ 机器学习 ]


node2vec: Scalable Feature Learning for Networks

@YFLu 推荐

#Network Embedding

node2vec 是 16 年 KDD 的一个工作,论文提出了一种学习网络节点的特征表示的算法框架。论文定义了一个网络节点邻居的灵活概念,并设计了一个带偏置的随机游走过程来获得不同邻居节点。

论文的亮点主要在:采用深度优先搜索(DFS)和宽度优先搜索(BFS)两种策略,随机游走生成节点的邻居节点集合。

论文链接

http://www.paperweekly.site/papers/823



Bilingual Word Embeddings from Parallel and Non-parallel Corpora for Cross-Language Text Classification

@xk57238890 推荐

#Word Embeddings

该文章介绍了一种建模多语言的段落向量(BRAVE)的模型,该模型通过句子对齐或者标签对齐可以学习词语的多语言分布式表示,从而可以支持多语言的文本分类。

论文链接

http://www.paperweekly.site/papers/821

本文由 AI 学术社区 PaperWeekly 精选推荐,社区目前已覆盖自然语言处理、计算机视觉、人工智能、机器学习、数据挖掘和信息检索等研究方向,点击「阅读原文」即刻加入社区!

 相关活动 


  不得不读的GAN  


GAN 是现在最热门的研究方向之一,那么到底有哪些 paper 是值得一读的?


为此,我们将在 PaperWeekly 社区发起一次 GAN专题论文推荐,欢迎大家一起参与推荐和 GAN 相关的论文。针对活动中出现的优质论文,我们将组织发起论文共读,由一名学术大咖为活动参与者进行在线论文解读。如果你推荐的论文被大家认可,获得了全场最高点赞数,我们将为你送出一份 PaperWeekly 神秘大礼包



 活动时间 



10 月 9 日-10 月 20 日



参与方式 



 1  点击本文底部的阅读原文进入活动页面

 2  点击我要参加,页面右上角将会收到活动消息通知(需注册登录)

 3  点击网站右上方的推荐论文进行推荐

 4  今日arXiv右侧下载arXiv Paper推荐插件,即可进行一键推荐

 5  为了更好的使用体验,建议通过PC端访问网站


*尚未注册PaperWeekly社区的用户请先申请注册。网站目前采用审核制注册,请如实填写个人信息,我们将在12小时内完成审核。


关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。

▽ 点击 | 阅读原文 | 加入社区

技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值