自我融合的改进鲸鱼优化算法(IWOA)在多种算法对比中的效果及参数优化方法详解

改进鲸鱼优化算法(IWOA,自己融合了多策略改进,名字自己取的[破涕为笑]),具体改进公式会在readme说明文件中详细给出。
与鲸鱼算法,灰狼算法,麻雀算法,北方苍鹰算法,在初始种群为30,独立运行次数30,迭代500次做比较,效果如下。
该改进仍有很大优化空间,自己可以对参数进行优化,不同参数组合会对效果有较大影响,文件中会给出在哪优化,如何进行优化,只改了一个参数效果有了很大提升,见F4效果对比图。
附带23种测试函数,测试函数对应波形如下,可对应收敛曲线一起看。

YID:3488721524585979

Mayaback


改进鲸鱼优化算法(IWOA,自己融合了多策略改进,名字自己取的[破涕为笑]),具体改进公式会在readme说明文件中详细给出。与鲸鱼算法,灰狼算法,麻雀算法,北方苍鹰算法,在初始种群为30,独立运行次数30,迭代500次做比较,效果如下。

在现代计算机科学领域,优化算法是解决复杂问题的重要工具。鲸鱼优化算法(IWOA)作为一种基于自然界鲸鱼行为的优化算法,已经在多个领域取得了显著的成果。然而,传统的IWOA算法在应用复杂问题时存在一些局限性,如收敛速度慢、易陷入局部最优解等问题。为了克服这些问题,本文提出了一种改进的鲸鱼优化算法(IWOA)。

在改进的IWOA算法中,我们自己融合了多策略改进,并为其命名为破涕为笑。具体的改进公式和策略会在readme说明文件中详细给出,这里不再赘述。为了评估改进后的算法性能,我们将其与其他几种优化算法进行对比,包括鲸鱼算法、灰狼算法、麻雀算法和北方苍鹰算法。

我们在实验中采用了相同的设置参数,包括初始种群数为30,独立运行次数为30,迭代次数为500次。通过对比实验结果,我们发现改进的IWOA算法在解决复杂问题时表现出更好的性能。

然而,尽管改进的IWOA算法已经取得了一定的改进效果,仍然存在一些优化空间。根据我们的实验结果,在不同的参数组合下,算法的性能会有较大的差异。我们在readme文件中详细说明了如何进行参数优化,以及优化的方向。值得注意的是,仅通过改变一个参数,我们就观察到了显著的改进效果,具体结果可参考F4效果对比图。

为了更直观地评估算法的性能,我们还提供了23种测试函数,并对应给出了波形图。这些波形图可以与收敛曲线一起观察,用于评估算法在不同问题上的表现。

综上所述,通过改进鲸鱼优化算法(IWOA),我们成功地提高了算法的性能,并在多个复杂问题中取得了良好的结果。然而,仍有一些优化空间可供进一步探索和改进。我们相信,随着更深入的研究和实验,改进的IWOA算法将在更广泛的领域发挥其优势,并为解决复杂问题提供有效的解决方案。

注意:本文所提到的IWOA算法改进是作者自行提出并进行实验的,相关的具体公式和策略会在readme文件中给出,本文不赘述。同时,参考文献和示例代码我们没有提供,读者可以参考我们提供的readme文件来了解更多详细信息。

【相关代码,程序地址】:http://lanzoup.cn/721524585979.html

### 改进鲸鱼优化算法(IWOA)的研究成果与实现方法 #### 准反向学习初始化种群 准反向学习是一种有效的初始化策略,用于增强初始解的质量并提高种群多样性。这种方法能够使初始种群分布更加均匀,从而提升全局搜索能力[^5]。 ```python import numpy as np def quasi_opposite_learning(population, lower_bound, upper_bound): opposite_population = [] for individual in population: new_individual = lower_bound + upper_bound - individual opposite_population.append(new_individual) return opposite_population ``` #### 非线性收敛因子 传统的线性收敛因子可能无法很好地平衡探索和开发阶段的需求。采用非线性形式可以更灵活地控制这一过程,在早期提供较大的探索空间而在后期加强局部搜索强度[^4]。 \[ a(t)=a_{0}-\frac{t}{T}(a_{0}-b), \quad t=1,2,\ldots,T \] 其中 \( T \) 表示最大迭代次数,\( a_0 \) 和 \( b \) 分别代表起始值和终止值。 #### 自适应权重策略 为了进一步改善局部搜索能力和防止过早收敛到次优解,引入了自适应权重机制。此策略会根据当前进化状态动态调整各个维度的重要性系数,使得算法能够在不同阶段自动调节搜索模式[^3]。 ```python def adaptive_weight(positions, fitness_values): avg_fitness = sum(fitness_values)/len(fitness_values) weights = [(avg_fitness / f)**2 if f != 0 else 1 for f in fitness_values] normalized_weights = [w/sum(weights) for w in weights] weighted_positions = [[p * nw for p,nw in zip(pos,normalized_weights)] for pos in positions] return weighted_positions ``` #### 随机差分变异策略 当群体逐渐趋同于某个区域时,容易造成遗传多样性的丧失。为此提出了随机差分变异操作,它可以在一定程度上打破这种局面,帮助跳出局部极值点。 \[ X_i^{(g+1)} = X_r^{(g)} + F(X_p^{(g)}-X_q^{(g)}) \] 这里 \( g \) 是代数索引; \( r,p,q \in {1,...,N} \); 并且满足 \( i≠r≠p≠q \).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值