产生连续的随机数

之前用到的随机数是以时间为种子的,当连续产生的时候,就会出现问题,更改了下。在设置种子的时候加上一个随机数。试了试,感觉还OK。

static unsigned int s_seed ;

void Utils::random_seed(int seed) 
{
	if(!seed) s_seed=time(NULL);
	else s_seed=seed;
}
int Utils::random_int(int min,int max) 
{
	s_seed=214013*s_seed+2531011;
	return min+(s_seed ^ s_seed>>15)%(max-min+1);

}
float Utils::random_float(float min,float max) 
{
	s_seed=214013*s_seed+2531011;
	return min+(s_seed>>16)*(1.0f/65535.0f)*(max-min);
}
使用:

Utils::random_seed(Utils::currentTimeMillis() + rand()) ;


为了让单片机连续不断地产生随机数,通常需要一个稳定的随机源和合适的随机数生成算法。在许多单片机系统中,可用的随机资源有限,往往依赖于硬件提供的某种形式的非确定性,如噪声、计数器溢出等。以下是一个基本的过程: 1. **硬件随机数生成**:如果芯片有内置的随机数发生器模块,如某些微控制器的专门硬件,可以直接读取其输出作为随机数。如果没有,一般利用硬件计数器的不可预知性,比如定时器溢出。 2. **初始化种子**:首次生成随机数前,需要初始化一个“种子”值,这个值可以基于时间(如当前系统时间)、外设状态或其他非确定性因素。 3. **线性同余法**:这是单片机中常用的简单随机数生成算法。每次从上一次生成的随机数乘以某个常数(模数),然后再加上一个常数(增加项),得出的新数值就是下一个随机数。公式通常是:`next_rand = (prev_rand * a + c) % m`。 4. **周期性地更新种子**:为了保持随机性,每次生成一定量的随机数后,都需要根据当前的随机值或额外的外部输入更新种子。比如,每生成一批随机数后,可以用当前随机数做下一轮的种子。 5. **存储随机数缓存**:由于计算随机数可能会消耗时间和存储空间,可以设计一个小的随机数缓冲区,先从缓冲区获取,当缓冲区满或空时才重新计算。 6. **使用伪随机数生成器**:对于更复杂的随机需求,可以使用更复杂的伪随机数生成器(PRNG),如Mersenne Twister这样的高质量随机数生成算法。 以下是伪代码示例: ```c uint32_t seed = initial_value; // 初始种子 while (true) { // 使用线性同余法生成随机数 uint32_t next_rand = (seed * some_constant + another_constant) % modulus; // 将随机数用于实际用途... useRandomNumber(next_rand); // 更新种子,这里假设每隔100次生成一个新的种子 if (count >= 100) { seed = getNewSeed(); // 获取新的随机值作为新种子 count = 0; } else { count++; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值