Keras
文章平均质量分 95
C小C
这个作者很懒,什么都没留下…
展开
-
使用Gym库+keras实现强化学习算法
【时间】2019.12.11【题目】使用Gym库+keras实现强化学习算法一、Gym库介绍与使用gym 介绍二、例子Keras深度强化学习-- Policy Network与DQN实现相关资源:Paper:Policy Gradient:Policy gradient methods for reinforcement learning with function ...转载 2019-12-11 16:17:03 · 2500 阅读 · 0 评论 -
keras中的学习率控制以及代码实现
【时间】2019.12.04【题目】keras中的学习率控制以及代码实现一、keras中的学习率控制使用两个回调函数进行lr控制:keras.callbacks.LearningRateScheduler(schedule)以及keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patien...原创 2019-12-04 22:34:12 · 4196 阅读 · 0 评论 -
keras中的后端backend及其相关函数(K.prod,K.cast)
【时间】2019.02.25【题目】keras中的后端backend及其相关函数(K.prod,K.cast)具体参考:Keras 后端,其中一、K.prodprodkeras.backend.prod(x, axis=None, keepdims=False)功能:在某一指定轴,计算张量中的值的乘积。参数x: 张量或变量。 axis: 一个整数需要计算乘积...原创 2019-02-25 16:34:55 · 20266 阅读 · 0 评论 -
在keras中import Softmax层出现 ImportError: cannot import name 'Softmax'错误的解决办法
【时间】2019.03.01【题目】在keras中import Softmax层出现 ImportError: cannot import name 'Softmax'错误的解决办法【出现的问题】在keras中import Softmax层出现 ImportError: cannot import name 'Softmax'错误。( from keras.layers imp...原创 2019-03-01 18:50:35 · 5309 阅读 · 0 评论 -
ImageDataGenerator生成器的flow,flow_from_directory用法
【时间】2019.03.02【题目】ImageDataGenerator生成器的flow,flow_from_directory用法ImageDataGenerator生成器的flow,flow_from_directory用法注意:flow_from_directory会根据文件夹目录自动创建标签,而flow需要自己输入标签。...转载 2019-03-02 16:15:59 · 1142 阅读 · 0 评论 -
Keras中给层输出加权值的方法(使用Lamda层)
【时间】2019.03.08【题目】Keras中给层输出加权值的方法(使用Lamda层)在Kears中可以使用Lamda层给层输出加权值的方法,参考:使用Keras实现Tensor的相乘和相加...转载 2019-03-08 16:19:19 · 2524 阅读 · 0 评论 -
keras中自定义多输出的损失函数
【时间】2019.03.07【题目】keras中自定义多输出的损失函数一、将损失函数自定义为一个层(比较有条理)Faster R-CNN系列(三):用keras构建多输入-多输出-多自定义loss的模型二、当只是与模型的输出有关,且总loss是各输出loss的加权和时,可以使用类似下面多任务的Multi loss的方法:Keras 多任务实现,Multi LossKeras...转载 2019-03-07 17:09:11 · 9588 阅读 · 2 评论 -
keras中的深度可分离卷积 SeparableConv2D与DepthwiseConv2D
【时间】2019.03.15【题目】keras中的深度可分离卷积SeparableConv2D与DepthwiseConv2D概述keras中的深度可分离卷积有SeparableConv2D与c两种,其中SeparableConv2D实现整个深度分离卷积过程,即深度方向的空间卷积 (分别作用于每个输入通道)+ 输出通道混合在一起的逐点卷积,而DepthwiseConv2D仅仅...原创 2019-03-15 18:57:01 · 27900 阅读 · 4 评论 -
keras中实现层mask功能(Lamda层与自定义层)
【时间】2019.03.25【题目】keras中实现层mask功能(Lamda层与自定义层)一、使用Lambda层1、详见keras Lambda 层keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None)function:要实现的函数,该函数仅接受一个变量,即上一层的...转载 2019-03-25 19:33:56 · 4350 阅读 · 1 评论 -
keras中的Merge层(实现层的相加、相减、相乘)
【时间】2019.03.25【题目】keras中的Merge层(实现层的相加、相减、相乘)详情请参考:Merge层一、层相加keras.layers.Add()添加输入列表的图层。该层接收一个相同shape列表张量,并返回它们的和,shape不变。Exampleimport kerasinput1 = keras.layers.Input(shape=...转载 2019-03-25 19:42:49 · 16079 阅读 · 1 评论 -
keras 如何使用多个 gpu进行训练(转)
【时间】2019.07.20【题目】keras 如何使用多个 gpu进行训练(转)1、转:keras 关于使用多个 gpu未试验,之后试验,关键是keras.utils.multi_gpu_model(model, gpus=None, cpu_merge=True, cpu_relocation=False) 的使用。2、转:[Keras] 使用Keras调用多GPU,并保存模型...转载 2019-07-20 23:25:35 · 2149 阅读 · 0 评论 -
17种GAN变体的Keras实现
【时间】2019.01.08【题目】17种GAN变体的Keras实现概述本文转自17种GAN变体的Keras实现请收好 | GitHub热门开源代码,只摘了其中的一点,完整请看原链接。 从2014年诞生至今,生成对抗网络(GAN)始终广受关注,已经出现了200多种有名有姓的变体。这项“造假神技”的创作范围,已经从最初的手写数字和几百像素小渣图,拓展到了壁纸级高清照片、明星脸...转载 2019-01-08 19:20:22 · 1343 阅读 · 0 评论 -
keras中获取层输出shape的方法汇总
【时间】2018.12.24【题目】keras中获取层输出shape的方法汇总概述在keras 中,要想获取层输出shape,可以先获取层对象,再通过层对象的属性output或者output_shape获得层输出shape(若要获取层输入shape,可以用input/input_shape)。两者的输出分别为:output: (红框部分分别表示层名以及输出shape)outpu...原创 2018-12-24 19:04:43 · 21599 阅读 · 6 评论 -
Keras中的model.get_layer()的使用方法
【时间】2018.12.24【题目】Keras中的model.get_layer()的使用方法 【语法】model.get_layer(self,name=None,index=None):依据层名或下标获得层对象注意若要使用下标获取层对象,正确的用法应该是model.get_layer(index=0),而不是model.get_layer(0),否则会报错。因为第一个参...原创 2018-12-24 18:24:15 · 18849 阅读 · 2 评论 -
(转载)快速开始:30s上手Keras
【时间】2018.10.23【题目】快速开始:30s上手Keras【转载链接】本文转载自《Keras中文文档》,链接为:https://keras-cn.readthedocs.io/en/latest/Keras的核心数据结构是“模型”,模型是一种组织网络层的方式。Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈。你也可以查看函数式模...转载 2018-10-23 22:55:19 · 381 阅读 · 0 评论 -
keras中实现3D卷积(Con3D)以及如何将输入数据转化为3D卷积的输入(后者附实现代码)
【时间】2018.10.26【题目】keras中实现3D卷积(Con3D)以及如何将输入数据转化为3D卷积的输入(附实现代码)概述 keras中实现3D卷积使用的是keras.layers.convolutional.Conv3D 函数。而在‘channels_last’模式下,3D卷积输入应为形如(samples,input_dim1,input_dim2, input_d...原创 2018-10-27 00:09:37 · 19613 阅读 · 15 评论 -
keras中Flatten层的用法及输入输出shape(附查看网络结构输入输出的查看技巧)
【时间】2018.11.21【题目】keras中Flatten层的用法及输入输出shape(附查看网络结构输入输出的查看技巧) 一、Flatten层Flatten层的实现在Keras.layers.core.Flatten()类中。功能: Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。 输入输出...原创 2018-11-21 19:15:31 · 16987 阅读 · 0 评论 -
keras 中的 verbose 参数详解
【时间】2018.11.27【题目】keras 中的 verbose 参数详解转载地址:https://www.jianshu.com/p/159a9ac413fa概述在 fit 和 evaluate 中 都有 verbose 这个参数,下面详细说一下一、fit 中的 verboseverbose:日志显示verbose = 0 为不在标准输出流输出日志信息verb...转载 2018-11-27 21:00:09 · 14114 阅读 · 1 评论 -
Keras中 ImageDataGenerator函数的参数
【时间】2018.11.27【题目】Keras中 ImageDataGenerator函数的参数本文转载自:https://blog.csdn.net/jacke121/article/details/79245732 一、Keras ImageDataGenerator参数from keras.preprocessing.image import ImageDataGene...转载 2018-11-27 21:04:11 · 5831 阅读 · 0 评论 -
(2018最新)win10+CUDA9.0+cudnn7.1.4+TensorFlow1.8.0安装
【时间】2018.11.30【题目】win10+CUDA9.0+cudnn7.1.4+TensorFlow1.8.0安装概述本文主要讲述了win10+CUDA9.0+cudnn7.1+TensorFlow1.8.0安装。下面是官方教程,是英文版的。CUDA:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-...原创 2018-11-30 19:10:22 · 3071 阅读 · 1 评论 -
Keras中可视化卷积层的类激活热力图
【时间】2018.12.26【题目】Keras中可视化卷积层的类激活热力图概述 本文是对《Deep Learning with python》一书中第5.4.3节Keras中可视化类激活的热力图的整理与总结,参考链接:https://blog.csdn.net/einstellung/article/details/82858974一、什么是类激活图(CAP)? ...原创 2018-12-26 17:05:12 · 12301 阅读 · 21 评论 -
keras中的K.gradients()函数
【时间】2018.12.26【题目】keras中的K.gradients()函数概述K.gradients(y,x)【功能】用于求y关于x 的导数(梯度)【输入】(y和x可以是张量tensor也可以是张量列表,形如 [tensor1, tensor2, …, tensorn]),【返回】返回的是一个张量列表,列表长度是张量列表x的长度,列表元素是与x具有一样shape的张...原创 2018-12-26 21:55:02 · 15048 阅读 · 3 评论 -
运行Tesorflow代码时错TypeError: 'NoneType' object is not callable的解决办法
【时间】2018.12.21【题目】运行Tesorflow代码时错TypeError: 'NoneType' object is not callable的解决办法 【出现的错误】Exception ignored in: <bound method BaseSession.__del__ of <tensorflow.python.client.session.Se...原创 2018-12-21 19:14:06 · 5670 阅读 · 0 评论 -
Keras内置函数的单词级one-hot编码
【时间】2018.12.27【题目】Keras内置函数的单词级one-hot编码概述 本文是对keras.preprocessing.text中的Tokenizer类的一些方法的讲解,用于构建单词级one-hot编码。其他one-hotd的实现方法可以参考:[Deep-Learning-with-Python] 文本序列中的深度学习一、Tokenizer类的一些方法t...原创 2018-12-27 19:53:14 · 2436 阅读 · 0 评论 -
【转载】 深度学习:Keras入门(一)之基础篇
【转载日期】2018.09.11【转载标题】 深度学习:Keras入门(一)之基础篇【转载说明】在原文的基础上进行删改,以及对相关概念进行补充【转载链接】https://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras 1)简介 Keras是由纯python编写的基于thean...转载 2018-09-11 18:59:41 · 760 阅读 · 0 评论