keras中获取层输出shape的方法汇总

【时间】2018.12.24

【题目】keras中获取层输出shape的方法汇总

概述

在keras 中,要想获取层输出shape,可以先获取层对象,再通过层对象的属性output或者output_shape获得层输出shape(若要获取层输入shape,可以用input/input_shape)。两者的输出分别为:

output: (红框部分分别表示层名以及输出shape)

output_shape:(即为层输出shape)

获取层对象的方法有两种,一种是使用model.get_layer()方法,另一种是使用model.layers[index]。

当然,你也可以使用model.summary()打印出整个模型,从而可以获取层输出shape。

一、方法一

使用model.get_layer(self,name=None,index=None):依据层名或下标获得层对象model.get_layer(self,name=None,index=None)

具体为:

1.1 特定层输出:

model.get_layer(index=0).output或者

model.get_layer(index=0).output_shape

1.2 所有层的输出

for i in range(len(model.layers)):

    print(model.get_layer(index=i).output)

二、方法二

使用model.layers[index]获取层对象,其余与方法一类似。

2.1 特定层输出:

model.layers[0].output或者

model.layers[0].output_shape

2.2 所有层的输出

for layer in model.layers:

    print(layer.output)

三、方法三:使用model.summary()打印出整个模型

四、测试

【测试代码】

from keras.models import Model

from keras.layers import Dense, Dropout, Activation, Flatten,Input

from keras.layers import Conv2D, MaxPooling2D

x = Input(shape=(96,96,3))

conv1_1 = Conv2D(64,kernel_size=(3,3),padding='valid', activation='relu', name='conv_1')(x)

conv1_2 = Conv2D(64,kernel_size=(3,3),padding='same', activation='relu', name='conv_2')(conv1_1)

pool1_1 = MaxPooling2D((2, 2), strides=(2, 2), name='pool_frame_1')(conv1_2)

conv1_3 = Conv2D(128,kernel_size=(3,3),padding='same', activation='relu', name='conv_3')(pool1_1)

conv1_4 = Conv2D(128,kernel_size=(3,3),padding='same', activation='relu', name='conv_4')(conv1_3)

pool1_2 = MaxPooling2D((2,2), strides=(2, 2), name='pool_frame_2')(conv1_4)



conv_5 = Conv2D(256,kernel_size=(3,3),padding='same', activation='relu', name='conv_5')(pool1_2)

conv_6 = Conv2D(256,kernel_size=(3,3),padding='same', activation='relu', name='conv_6')(conv_5)

conv_7 = Conv2D(256,kernel_size=(3,3),padding='same', activation='relu', name='conv_7')(conv_6)

pool_3 = MaxPooling2D((2,2), strides=(2, 2), name='pool_final_3')(conv_7)

conv_8 = Conv2D(512,kernel_size=(3,3),padding='same', activation='relu', name='conv_8')(pool_3)

conv_9 = Conv2D(512,kernel_size=(3,3),padding='same', activation='relu', name='conv_9')(conv_8)

conv_10 = Conv2D(512,kernel_size=(3,3),padding='same', activation='relu', name='conv_10')(conv_9)

pool_4 = MaxPooling2D((2,2), strides=(2, 2), name='pool_final_4')(conv_10)

conv_11 = Conv2D(512,kernel_size=(3,3),padding='same', activation='relu', name='conv_11')(pool_4)

conv_12 = Conv2D(512,kernel_size=(3,3),padding='same', activation='relu', name='conv_12')(conv_11)

conv_13 = Conv2D(512,kernel_size=(3,3),padding='same', activation='relu', name='conv_13')(conv_12)

pool_5 = MaxPooling2D((2,2), strides=(2, 2), name='pool_final_5')(conv_13)



flatten = Flatten()(pool_5)

fc1= Dense(256, activation='relu')(flatten)

out_put = Dense(2, activation='softmax')(fc1)

model = Model(inputs=x, outputs=out_put)

model.compile(loss='categorical_crossentropy',

              optimizer='adadelta',

              metrics=['accuracy'])

print('method 3:')

model.summary()  # method 3



print('method 1:')

for i in range(len(model.layers)):

    print(model.get_layer(index=i).output)

print('method 2:')

for layer in model.layers:

    print(layer.output_shape)

 

【运行结果】

 

### 使用双通道LSTM模型进行服务器或系统的负载预测 为了有效应对不同类型的负载特性,双通道LSTM(Long Short-Term Memory)网络提供了一种强大的解决方案。该架构能够处理复杂的时序数据,并针对不同类型的数据流分别建模,从而提高预测精度。 #### 双通道LSTM的工作原理 双通道LSTM由两个独立的LSTM组成,每个通道负责处理特定类别的输入特征集。第一个通道专注于短期波动较大的瞬态负载特征,而第二个通道则侧重于长期趋势分析。这种设计使得模型既能捕捉到短期内剧烈变动的影响因素,也能理解长时间跨度内的演变规律[^4]。 对于服务器或系统负载预测而言: - **短周期通道**:接收反映即时状态的信息作为输入,比如CPU利用率、内存占用率等高频更新指标; - **长周期通道**:获取体现历史模式的数据序列,例如过去几天甚至几周内相似时间段的表现记录。 最终,来自这两个分支的结果会被汇总起来,在顶通过全连接或其他组合方式形成综合判断,进而给出对未来一段时间内整体工作负荷水平的具体估计值。 #### 构建与训练双通道LSTM模型 以下是构建这样一个双通道LSTM模型的一个Python代码示例,假设使用Keras库来进行开发: ```python from keras.models import Model from keras.layers import Input, LSTM, Dense, concatenate # 定义长短周期输入形状 (样本数, 时间步长, 特征维度) short_term_input_shape = (None, 72, 8) # 假设每小时采样一次共三天的历史数据加上八个相关属性 long_term_input_shape = (None, 168, 5) # 过去一周每天同一时刻五个关键性能指标 # 创建短周期LSTM路径 input_short = Input(shape=short_term_input_shape[1:]) lstm_out_short = LSTM(32)(input_short) # 创建长周期LSTM路径 input_long = Input(shape=long_term_input_shape[1:]) lstm_out_long = LSTM(64)(input_long) # 合并两条路径输出 merged = concatenate([lstm_out_short, lstm_out_long]) # 添加额外一以增强表达能力 dense_output = Dense(10, activation='relu')(merged) # 输出设定为回归任务所需的单一数值节点 output = Dense(1)(dense_output) model = Model(inputs=[input_short, input_long], outputs=output) model.compile(optimizer='adam', loss='mse') ``` 此段代码展示了如何定义一个多输入端口的神经网络结构,其中包含了两个专门定制化用于解析不同尺度时间特性的子网路。之后再利用`concatenate()`函数将两者得到的学习成果拼接在一起送入后续处理环节完成最后一步运算操作。 在实际应用过程中还需要注意准备合适格式的数据集供上述框架加载以及调整超参数配置直至获得满意的效果为止。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值