AI相关概念
C小C
这个作者很懒,什么都没留下…
展开
-
(转)对于反卷积概念的理解
【时间】2018.10.10【题目】(转)对于反卷积概念的理解【原文链接】https://buptldy.github.io/2016/10/29/2016-10-29-deconv/ 反卷积(Deconvolution)的概念第一次出现是Zeiler在2010年发表的论文Deconvolutional networks中,但是并没有指定反卷积这个名字,反卷积这个术语正式的使用是在...转载 2018-10-10 12:30:10 · 459 阅读 · 0 评论 -
L0、L1、L2范数在机器学习中的应用(转)
【时间】2019.08.12【题目】L0、L1、L2范数在机器学习中的应用(转)详细地讲解了L0、L1、L2的概念、差异、应用、效果并解释了原因,非常详细形象。一、L0、L1、L2范数在机器学习中的应用...转载 2019-08-12 11:04:18 · 344 阅读 · 0 评论 -
Dropout与Inverted Dropout细节,在训练与测试阶段的使用
【时间】2019.08.06【题目】Dropout与Inverted Dropout细节,在训练与测试阶段的使用现在常说的Dropout指Inverted Dropout,Keras中实现的Dropout也是Inverted Dropout。一、Dropout 的实现方式二、两者的区别Inverted-dropout的基本实现原理是在训练阶段每次迭代过程中,以keep_p...转载 2019-08-06 15:00:35 · 4472 阅读 · 0 评论 -
对比损失与三元组损失
【时间】2019.08.05【题目】对比损失与三元组损失一、对比损失二、三元组损失具体见:一篇文章,教你读懂度量学习、三元组损失函数度量学习(metric learning)损失函数...原创 2019-08-05 14:23:01 · 4240 阅读 · 0 评论 -
凸优化和非凸优化(为什么要求损失函数是凸函数)
【时间】2019.08.03【题目】凸优化和非凸优化具体见:凸优化和非凸优化为什么深度学习中往往要求损失函数是凸函数?因为凸函数最终得到的解是全局最优解,非凸函数得到的可能是局部最优解,训练时可能不收敛。(个人理解)...转载 2019-08-03 20:39:02 · 7722 阅读 · 0 评论 -
稀疏表示(Sparse Representations)
【时间】2019.07.16【题目】稀疏表示(Sparse Representations)(转)稀疏编码、字典学习稀疏表示(Sparse Representations)转载 2019-07-16 21:40:40 · 1252 阅读 · 0 评论 -
计算机视觉中的注意力机制(Visual Attention)(转)
【时间】2019.05.18【题目】计算机视觉中的注意力机制(Visual Attention)转载:计算机视觉中的注意力机制(Visual Attention)转载 2019-05-18 15:56:24 · 1303 阅读 · 0 评论 -
keras中实现SVM(转,未试过)
【时间】2019.03.26【题目】keras中实现SVM(转,未试过)一、keras中实现SVM1、CNN中使用SVM进行分类(keras的实现)二、hinge loss1、理解Hinge Loss (折页损失函数、铰链损失函数)2、SVM(支持向量机)之Hinge Loss解释...转载 2019-03-26 17:07:04 · 6053 阅读 · 0 评论 -
Batch Normalization 学习笔记与Keras中的BatchNormalization层
【时间】2019.01.22【题目】Batch Normalization 学习笔记与Keras中的BatchNormalization层一、Batch Normalization基础知识具体参考博文:Batch Normalization 学习笔记在博文中,介绍了Batch Normalization 的出现背景,即它要解决的问题:解决传统的神经网络训练需要我们人为的去选择参数,...原创 2019-01-22 13:02:33 · 27359 阅读 · 6 评论 -
对比损失Contrastive Loss
【时间】2-019.01.21【题目】对比损失Contrastive LossPS:本文转载自Contrastive LossContrastive Loss在传统的siamese network中一般使用Contrastive Loss作为损失函数,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。siamese network-孪生神经网络con...转载 2019-01-21 15:31:24 · 2543 阅读 · 1 评论 -
(转)交叉熵损失函数的推导过程与直观理解
【时间】2019.01.09【题目】(转)交叉熵损失函数的推导过程与直观理解【转载链接】简单的交叉熵损失函数,你真的懂了吗?一、交叉熵损失函数的推导过程 说起交叉熵损失函数「Cross Entropy Loss」,脑海中立马浮现出它的公式: 我们已经对这个交叉熵函数非常熟悉,大多数情况下都是直接拿来使用就好。但是它是...转载 2019-01-09 19:58:59 · 5669 阅读 · 2 评论 -
(转)深度学习中优化算法总结(momentum、Nesterov Momentum、AdaGrad、Adadelta、RMSprop、Adam)
【时间】2018.12.12【题目】深度学习中优化算法总结(momentum、Nesterov Momentum、AdaGrad、Adadelta、RMSprop、Adam)转载:深度学习中优化方法——momentum、Nesterov Momentum、AdaGrad、Adadelta、RMSprop、AdamDeep Learning 最优化方法之Momentum(动量)...转载 2018-12-12 17:19:04 · 762 阅读 · 1 评论 -
对反卷积概念的一些总结
【时间】2018.10.10【题目】对反卷积概念的一些总结 概述今天读到了一篇对反卷积概念解释得形象易懂的文章,下面是对文章阅读后的一点总结,原文内容更为详尽,具体可见:https://blog.csdn.net/C_chuxin/article/details/82995223 一、对反卷积概念的一些总结 反卷积在结果也是通过卷积运算获得的,其中卷积核是原卷积核的转...原创 2018-10-10 12:47:25 · 1228 阅读 · 0 评论 -
监督、无监督、在线和批量学习介绍(转)
【时间】2019.08.12【题目】监督、无监督、在线和批量学习介绍(转)转自:最全机器学习种类讲解:监督、无监督、在线和批量学习都讲明白了转载 2019-08-12 14:06:12 · 279 阅读 · 0 评论