【时间】2019.01.22
【题目】Batch Normalization 学习笔记与Keras中的BatchNormalization层
一、Batch Normalization基础知识
具体参考博文:Batch Normalization 学习笔记
- 在博文中,介绍了Batch Normalization 的出现背景,即它要解决的问题:解决传统的神经网络训练需要我们人为的去选择参数,比如学习率、参数初始化、权重衰减系数、Drop out比例 的问题,并能提高算法的收敛速度。它的强大之处在于
- BN算法的实现:
- test过程中:
PS:其实训练与测试过程中的y输出是同样的式子(将