In-Context Retrieval-Augmented Language Models

828 篇文章

已下架不支持订阅

本文提出了一种名为上下文RALM的方法,它在不改变语言模型架构的情况下,通过结合现成检索器提供的相关文档来提升语言建模性能。这种方法在不同规模的模型和语料库中展现出显著的优势,并且探讨了针对LM的文档检索和排序优化策略,为开放域问答等任务提供改进。上下文RALM降低了对昂贵微调的依赖,为预训练LM的知识注入开辟了新途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《In-Context Retrieval-Augmented Language Models》的翻译。

摘要

检索增强语言建模(RALM)方法在生成过程中对基础语料库中的相关文档设置语言模型(LM),可以显著提高语言建模性能。此外,它们可以缓解事实上不准确的文本生成问题,并提供自然的来源归因机制。现有的RALM方法侧重于修改LM体系结构,以促进外部信息的合并,从而使部署显著复杂化。本文考虑了一个简单的替代方案,我们称之为上下文RALM:保持LM架构不变,并为输入准备基础文档,而不需要对LM进行任何进一步的训练。我们发现,建立在现成的通用检索器上的上下文RALM在模型大小和不同的语料库中提供了惊人的大LM增益。我们还证明了文档检索和排序机制可以专门用于RALM设置,以进一步提高性能。我们得出的结论是,In-Context RALM在增加LM基准的流行率方面具有相当大的潜力,特别是在必须在不修改甚至通过API访问的情况下使用预训练的LM的情况下。

1 引言

2 相关工作

3 我们的框架

4 实验细节

5 具有现成检索器的上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值