Generative Multimodal Models are In-Context Learners

828 篇文章

已下架不支持订阅

本文介绍了Emu2,一个370亿参数的生成多模态模型,它在小样本环境中展示出强大的多模态任务处理能力,尤其在动态推理和视觉提示方面。Emu2在多模态理解和生成任务中达到SOTA,并作为一个通用接口用于各种任务。尽管存在局限性,但研究表明大规模生成多模态模型可能是构建通用多模态系统的进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Generative Multimodal Models are In-Context Learners》的翻译。

生成型多模态模型是上下文学习者

摘要

人类在上下文中轻松解决多模态任务的能力(即,只需几次演示或简单指令),是当前多模态系统在很大程度上难以模仿的。在这项工作中,我们证明了大型多模态模型的任务不可知上下文学习能力可以通过有效的扩展得到显著增强。我们介绍了Emu2,这是一个具有370亿个参数的生成多模态模型,在具有统一自回归目标的大规模多模态序列上训练。Emu2表现出强大的多模态上下文学习能力,甚至可以解决需要动态推理的任务,如视觉提示和基于对象的生成。该模型创下了在小样本环境下进行多模态理解任务的新纪录。当指令被调整为遵循特定指令时,Emu2在具有挑战性的任务上进一步达到了最先进的水平,如大型多模态模型的问答基准和开放式主题驱动的生成。这些成果表明,Emu2可以作为一个基础模型和通用接口,用于各种多模态任务。代码和模型是公开的,以促进未来的研究。

1 引言

2 方法

3 评估

4 相关工作

5 广泛的影响和局限性

6 结论

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值