From Millions of Tweets to Actionable Insights: Leveraging LLMs for User Profiling

在这里插入图片描述

一、文章主要内容总结

本文提出了一种基于大语言模型(LLM)的社交媒体用户画像方法,旨在解决传统方法依赖大量标注数据、特征不可解释、适应性差等问题。核心流程包括:

  1. 数据过滤:通过半监督语义过滤方法,利用领域知识库(如维基数据)从600万条波斯语政治推文中筛选出170万条政治相关内容,构建数据集PersianPol6M。
  2. 画像生成
    • 抽象式画像:使用LLM生成自然语言摘要,提炼用户观点和趋势。
    • 提取式画像:从推文中选取最具代表性的原文,保留用户真实表达。
  3. 评估框架:通过基于LLM的开卷问答任务,对比画像与完整推文历史的立场检测性能,验证信息保留能力。

实验结果表明,该方法在宏观F1分数上比传统方法和现有LLM方法高出9.8%,尤其在提取式画像中表现更优,同时减少了对标注数据的依赖。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值