A Survey on Hardware Accelerators for Large Language Models

828 篇文章

已下架不支持订阅

本文详尽调查了针对大型语言模型(LLM)的硬件加速器,探讨了GPU、FPGA、ASIC及内存中加速器在性能和能效上的提升。随着LLM在自然语言处理中的应用增加,硬件加速成为解决计算挑战的关键,有望降低数据中心的能源消耗和碳排放。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《A Survey on Hardware Accelerators for Large Language Models》的翻译。

摘要

大型语言模型(LLM)已成为自然语言处理任务的强大工具,其理解和生成类人文本的能力彻底改变了该领域。随着对更复杂LLM的需求持续增长,迫切需要解决与其规模和复杂性相关的计算挑战。本文对旨在提高大型语言模型的性能和能效的硬件加速器进行了全面的调查。通过研究各种加速器,包括GPU、FPGA和定制设计的架构,我们探索了为满足LLM的独特计算需求而定制的硬件解决方案的前景。该调查包括对架构、性能指标和能效考虑因素的深入分析,为旨在优化LLM在现实应用中的部署的研究人员、工程师和决策者提供了宝贵的见解。

1 引言

2 计算和能源需求

3 基于FPGA的加速器

4 基于CPU和GPU的加速器

5 ASIC加速器

6 内存中硬件加速器

7 定量比较

8 结论

大型语言模型已经成为一种很有前途和强大的科学和社会技术。然而,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值